

transactions by 2020, we need to think in terms of much bigger volumes than we currently have even now. In this post I'll look at Adyen's evolving approach to updating our PostgreSQL database, against the requirements and challenges

Choosing our technology My colleague Michiel has written previously on how we have made a conscious decision to be "ruthless" when choosing a solution We make careful decisions that give significant weight to the reliability of a solution and the maturity of the ecosystem (support, community, documentation and so on) that surrounds it, as well as the functionality. We built our database stack with PostgreSQL, as it provides consistency, isolation, and reliability we need. In addition, it is open source, and has an active ecosystem including multiple support and consultancy companies. Finally, as we work with sensitive financial data, having a transactional database was key as it ensures we don't lose track of records.

· Stop traffic to the database cluster.

· Restart the primary.

· Start the software again.

lose any data or compromise redundancy.

Looking toward PostgreSQL 10.0+

using storage devices with increased capacity.

associated with our previous approach.

Technical careers at Adyen

See All

This approach has a number of advantages: • It's relatively easy once it is set up, as many of the steps can be automated, following some test runs and writing the script.

• It's very fast, as subsequent snapshots are only a diff from the original. In fact, to copy the snapshot takes only a few minutes. • It meets our requirements for redundancy. Before we start the upgrades we make a snapshot of all the servers. If the upgrade would fail at some point, we can simply revert to the old snapshots. This means we may lose an hour of time, but we would not

The beauty of our new approach is that it can continue to scale indefinitely -horizontally, by adding more clusters, and vertically, by

In fact, we have doubled the number of live clusters in the past year, and our biggest cluster has already grown to 74 terabytes. And

later this year, we are looking forward to using this approach to update to PostgreSQL 10.3+, without any of the headaches

• Only when there are at least two replicas online, connected, and up-to-date, we allow access to the cluster again. So there is

This process then needs to be repeated across all clusters. Altogether, the process takes around a day including preparation work.

· Run the PostgreSQL upgrade on the primary server, using a script to automate as many steps as possible. The advantages of

this approach are to speed up the process and make it easily repeatable. (3-5 minutes)

• Stop PostgreSQL on the upgraded primary and create a snapshot of the volumes. (Up to 10 minutes)

• Import the snapshot to the replica server, mount the (already upgraded) primary volume on the replica server.

Copy the snapshot of the upgraded primary to the storage device of the replicas. (2-5 minutes)

· Reconnect the replica server to the primary, by simply putting in the correct recovery.conf file.

never a moment when access to the cluster is open with less than two replicas online.

We are on the lookout for talented engineers and technical people to help us build the infrastructure of global commerce! Check out developer vacancies

Products

Payments

Issuing

Pricing

Risk management

in

ur newsletter

Authentication

Resources

Academy

Newsletter

Documentation

Knowledge Hub

Global (English) ✓

About

Careers

Contact

Platform

information, please see our

Cookie Policy

Infrastructure

You can read more about how we use cookies, how we share your data with our partners, and how you can change your settings on our Cookie Policy. To learn what personal information we collect about you, the purpose we process your data for, and how you can opt-out of the sales or sharing of your personal

Accept All Cookies

Reject All

Cookies Settings

Press & media

Investor Relations

Partner with us

Business Email * Subscribe By submitting your information you confirm that you have read Adyen's Privacy Policy and agree to the use of your data in all Adyen communications.

• Upgrade the replica to the new PostgreSQL version. • Set up a logical replication of the database using Slony. • Switch Slony primary. • Upgrade the other two replicas to the new version. • Take down the logical replication. • Upgrade the last replica to the new version. At 10 terabytes it took a few days before we got the new server up and running, and this process was becoming progressively more time-consuming. Furthermore, we could foresee a potential impact on redundancy in the long term, as replicas were sacrificed at certain points in the process. With a 50-terabyte database on the horizon, the length of time required and the potential risks to redundancy started to become unacceptable. New approach: Updating 50 terabytes to 9.6 By the time 9.6 was to be released, we needed a smarter, more scalable solution. In reality, our options were limited. Continuing with logical replication was impossible for the reasons I outlined above. The only other option from a PostgreSQL perspective was to run a pg_upgrade on the primary. However, this would have meant that you would have only one primary, which is also an unacceptable situation from a redundancy perspective. As PostgreSQL options were not suitable for the next upgrade, in parallel we considered other possibilities. Our storage devices were able to make instant snapshots and also make them available on remote storage devices over the network, within a much smaller timeframe. We started combining the options, and ultimately, our solution involved the following steps:

Fresh insights, straight to your

inbox

Make the right decisions with the latest insights and advice on business growth and payments innovation.

First name *

Last name *

Developer newsletter Get updated on new blog posts and other developer news. Subscribe now Blogs Blogs Tech stories B2B embedded finance: How Why card presence is no longer **Dynamic Identification: building** this \$185 billion opportunity is the next layer of trust in global a key security metric transforming SaaS platforms... commerce November 12th, 2025 · 6 minutes November 13th, 2025 · 9 minutes November 11th, 2025 · 8 minutes

A look at our database architecture Our PostgreSQL database clusters consist of one primary and at least three replica servers, spread over multiple data centers. The database servers are dual socket machines with 768 GB of RAM. Each server connects to its own shared storage device with fiber channel or ISCSI, and has a raw capacity of 150+ terabytes of SSDs and average compression ratio of 1:6. One other detail to note is that we built our software architecture in such a way that we can stop traffic to our PostgreSQL databases, queue the transactions, and run a PostgreSQL update without affecting payments acceptance. Previous approach: Updating 10 terabytes As recently as 2015, our database needs were much simpler. Our approach to upgrading to new PostgreSQL versions followed these steps: Replay • Sacrifice a replica server.

posed by redundancy, uptime, and scalability.