
User: Password: Log in | Subscribe | Register

By Joe Brockmeier
November 24, 2025

Send a free link

APT Rust requirement raises
questions

[LWN subscriber-only content]

Welcome to LWN.net

The following subscription-only content has been made
available to you by an LWN subscriber. Thousands of
subscribers depend on LWN for the best news from the Linux
and free software communities. If you enjoy this article, please
consider subscribing to LWN. Thank you for visiting
LWN.net!

It is rarely newsworthy when a project or package
picks up a new dependency. However, changes in a
core tool like Debian's Advanced Package Tool

(APT) can have far-reaching effects. For example, Julian Andres Klode's
declaration that APT would require Rust in May 2026 means that a few of
Debian's unofficial ports must either acquire a working Rust toolchain or
depend on an old version of APT. This has raised several questions within the
project, particularly about the ability of a single maintainer to make changes
that have widespread impact.

On October 31, Klode sent an announcement to the debian-devel mailing list
that he intended to introduce Rust dependencies and code into APT as soon as
May 2026:

This extends at first to the Rust compiler and standard library, and
the Sequoia ecosystem.

In particular, our code to parse .deb, .ar, .tar, and the HTTP
signature verification code would strongly benefit from memory
safe languages and a stronger approach to unit testing.

If you maintain a port without a working Rust toolchain, please
ensure it has one within the next 6 months, or sunset the port.

Klode added this was necessary so that the project as a whole could move
forward, rely on modern technologies, "and not be held back by trying to
shoehorn modern software on retro computing devices". Some Debian
developers have welcomed the news. Paul Tagliamonte acknowledged that it
would impact unofficial Debian ports but called the push toward Rust
"welcome news".

However, John Paul Adrian Glaubitz complained that Klode's wording was
unpleasant and that the approach was confrontational. In another message, he
explained that he was not against adoption of Rust; he had worked on enabling
Rust on many of the Debian architectures and helped to fix architecture-
specific bugs in the Rust toolchain as well as LLVM upstream. However, the
message strongly suggested there was no room for a change in plan: Klode had
ended his message with "thank you for understanding", which invited no
further discussion. Glaubitz was one of a few Debian developers who
expressed discomfort with Klode's communication style in the message.

Klode noted, briefly, that Rust was already a hard requirement for all Debian
release architectures and ports, except for Alpha (alpha), Motorola 680x0
(m68k), PA-RISC (hppa), and SuperH (sh4), because of APT's use of the
Sequoia-PGP project's sqv tool to verify OpenPGP signatures. APT falls back
to using the GNU Privacy Guard signature-verification tool, gpgv, on ports that
do not have a Rust compiler. By depending directly on Rust, though, APT itself
would not be available on ports without a Rust compiler. LWN recently
covered the state of Linux architecture support, and the status of Rust support
for each one.

None of the ports listed by Klode are among those officially supported by
Debian today, or targeted for support in Debian 14 ("forky"). The sh4 port has
never been officially supported, and none of the other ports have been
supported since Debian 6.0. The actual impact on the ports lacking Rust is also
less dramatic than it sounded at first. Glaubitz assured Antoni Boucher that "the
ultimatum that Julian set doesn't really exist", but phrasing it that way "gets
more attention in the news". Boucher is the maintainer of rust_codegen_gcc,
a GCC ahead-of-time code generator for Rust. Nothing, Glaubitz said, stops
ports from using a non-Rust version of APT until Boucher and others manage
to bootstrap Rust for those ports.

Security theater?

David Kalnischkies, who is also a major contributor to APT, suggested that if
the goal is to reduce bugs, it would be better to remove the code that is used to
parse the .deb, .ar, and .tar formats that Klode mentioned from APT entirely. It
is only needed for two tools, apt-ftparchive and apt-extracttemplates, he
said, and the only "serious usage" of apt-ftparchive was by Klode's
employer, Canonical, for its Launchpad software-collaboration platform. If
those were taken out of the main APT code base, then it would not matter
whether they were written in Rust, Python, or another language, since the tools
are not directly necessary for any given port.

Kalnischkies also questioned the claim that Rust was necessary to achieve the
stronger approach to unit testing that Klode mentioned:

You can certainly do unit tests in C++, we do. The main problem is
that someone has to write those tests. Like docs.

Your new solver e.g. has none (apart from our preexisting
integration tests). You don't seriously claim that is because of C++
? If you don't like GoogleTest, which is what we currently have, I
could suggest doctest (as I did in previous installments). Plenty
other frameworks exist with similar or different styles.

Klode has not responded to those comments yet, which is a bit unfortunate
given the fact that introducing hard dependencies on Rust has an impact
beyond his own work on APT. It may well be that he has good answers to the
questions, but it can also give the impression that Klode is simply embracing a
trend toward Rust. He is involved in the Ubuntu work to migrate from GNU
Coreutils to the Rust-based uutils. The reasons given for that work, again, are
around modernization and better security—but security is not automatically
guaranteed simply by switching to Rust, and there are a number of other
considerations.

For example, Adrian Bunk pointed out that there are a number of Debian
teams, as well as tooling, that will be impacted by writing some of APT in
Rust. The release notes for Debian 13 ("trixie") mention that Debian's
infrastructure "currently has problems with rebuilding packages of types that
systematically use static linking", such as those with code written in Go and
Rust. Thus, "these packages will be covered by limited security support until
the infrastructure is improved to deal with them maintainably". Limited
security support means that updates to Rust libraries are likely to only be
released when Debian publishes a point release, which happens about every
two months. The security team has specifically stated that sqv is fully
supported, but there are still outstanding problems.

Due to the static-linking issue, any time one of sqv's dependencies, currently
more than 40 Rust crates, have to be rebuilt due to a security issue, sqv (at least
potentially) also needs to be rebuilt. There are also difficulties in tracking
CVEs for all of its dependencies, and understanding when a security
vulnerability in a Rust crate may require updating a Rust program that depends
on it.

Fabian Grünbichler, a maintainer of Debian's Rust toolchain, listed several
outstanding problems Debian has with dealing with Rust packages. One of the
largest is the need for a consistent Debian policy for declaring statically linked
libraries. In 2022, Guillem Jover added a control field for Debian packages
called Static-Built-Using (SBU), which would list the source packages used to
build a binary package. This would indicate when a binary package needs to be
rebuilt due to an update in another source package. For example, sqv depends
on more than 40 Rust crates that are packaged for Debian. Without declaring
the SBUs, it may not be clear if sqv needs to be updated when one of its
dependencies is updated. Debian has been working on a policy requirement for
SBU since April 2024, but it is not yet finished or adopted.

The discussion sparked by Grünbichler makes clear that most of Debian's Rust-
related problems are in the process of being solved. However, there's no
evidence that Klode explored the problems before declaring that APT would
depend on Rust, or even asked "is this a reasonable time frame to introduce this
dependency?"

Where tradition meets tomorrow

Debian's tagline, or at least one of its taglines, is "the universal operating
system", meaning that the project aims to run on a wide variety of hardware
(old and new) and be usable on the desktop, server, IoT devices, and more. The
"Why Debian" page lists a number of reasons users and developers should
choose the distribution: multiple hardware architectures, long-term support,
and its democratic governance structure are just a few of the arguments it puts
forward in favor of Debian. It also notes that "Debian cannot be controlled by a
single company". A single developer employed by a company to work on
Debian tools pushing a change that seems beneficial to that company, without
discussion or debate, that impacts multiple hardware architectures and that
requires other volunteers to do unplanned work or meet an artificial deadline
seems to go against many of the project's stated values.

Debian, of course, does have checks and balances that could be employed if
other Debian developers feel it necessary. Someone could, for example, appeal
to Debian's Technical Committee, or sponsor a general resolution to override a
developer if they cannot be persuaded by discussion alone. That happened
recently when the committee required systemd maintainers to provide the
/var/lock directory "until a satisfactory migration of impacted software has
occurred and Policy updated accordingly".

However, it also seems fair to point out that Debian can move slowly, even
glacially, at times. APT added support for the DEB822 format for its source
information lists in 2015. Despite APT supporting that format for years, Klode
faced resistance in 2021, when he pushed for Debian to move to the new
format ahead of the Debian 12 ("bookworm") release in 2021, but was
unsuccessful. It is now the default for trixie with the move to APT 3.0, though
APT will continue to support the old format for years to come.

The fact is, regardless of what Klode does with APT, more and more free
software is being written (or rewritten) in Rust. Making it easier to support that
software when it is packaged for Debian is to everyone's benefit. Perhaps the
project needs some developers who will be aggressive about pushing the
project to move more quickly in improving its support for Rust. However, what
is really needed is more developers lending a hand to do the work that is
needed to support Rust in Debian and elsewhere, such as gccrs. It does not
seem in keeping with Debian's community focus for a single developer to
simply declare dependencies that other volunteers will have to scramble to
support.

Log in to post comments

[–] portable APT?
Posted Nov 24, 2025 16:42 UTC (Mon) by atai (subscriber, #10977) [Link] (4
responses)

is it possible to fork APT so these Rust components can be filled in with C/C++
implementation so portable APT can be in feature/functionality parity with the
APT using Rust so these ports continue

Reply to this comment

[–] portable APT?
Posted Nov 24, 2025 16:53 UTC (Mon) by epa (subscriber, #39769) [Link] (1
responses)

How about a Rust to C converter? I vaguely expected that would exist
somewhere. It wouldn't run the borrow checker or most of Rust's other
compile time checks, but that doesn't matter, as long as the code previously
built with a full Rust compiler. And it could generate code that always runs
singlethreaded.

Reply to this comment

[–] portable APT?
Posted Nov 24, 2025 17:14 UTC (Mon) by ojeda (subscriber, #143370)
[Link]

For that, one may write a new backend for an existing Rust compiler. That
way, the borrow checker and every other compile-time check still applies.

`rustc_codegen_clr` has such a mode, and there was also another start on a
new C backend for `rustc`. Neither is "production ready", but it is a nice
approach, and in fact it is not uncommon for languages to design their
compilers that way.

Reply to this comment

[–] portable APT?
Posted Nov 24, 2025 16:53 UTC (Mon) by jmm (subscriber, #34596) [Link]

There's no strict dependency on apt in Debian, the whole discussion was
totally blown out of proportion in the first place.
The ports w/o a Rust toolchain could still use cupt, which is written in C++.

Reply to this comment

[–] portable APT?
Posted Nov 24, 2025 16:56 UTC (Mon) by farnz (subscriber, #17727) [Link]

The question, as always, would be who's going to do the forking and keep up
with upstream?

The other route is to contribute to things like gccrs or rust_codegen_gcc, so
that Rust is available on these ports, too. This has the slight advantage that,
once you have Rust support, any other packages in Debian that need Rust
become buildable for that port.

Reply to this comment

[–] Shared libraries
Posted Nov 24, 2025 17:02 UTC (Mon) by ballombe (subscriber, #9523)
[Link] (84 responses)

Most of Debian was build around the need to support shared libraries and the
challenge and convenience that come with them.

I am very reticent to lose that by moving to rust, especially since there is no
strictly technical reasons,
C++ support shared libraries and rust could in principle support them too. In
fact rust shared libraries could fix most of the problems with C shared libraries
by having well-defined ABI and API definitions in the library itself.

Rebuilding packages to update their dependencies is not sustainable for
Debian.

Reply to this comment

[–] Shared libraries
Posted Nov 24, 2025 17:26 UTC (Mon) by DemiMarie (subscriber, #164188)
[Link] (72 responses)

Rebuilding packages when their dependencies change is the future.

Even in C++, you already need to do this to pull in fixes made to a template,
because templates are located in the header file. Most other natively-compiled
languages also require such rebuilding. When it comes to new languages,
Swift and maybe Hare are the only exceptions I know of.

None of these languages are being developed or funded by distros. They are
all developed and funded by companies that can and do rebuild their
programs from source and link statically without any issues. Distros are
complaining that there is a problem without doing a substantial fraction of
upstream maintenance on Cargo, rustc, GHC, Go, or any of the other
toolchains.

If distros want ecosystems to be more friendly to them, they need to put in the
(large) amount of work to make that happen. It’s not impossible, but it is very
difficult, and it has ecosystem-wide implications. Until they do, they get to
use whatever the people who do do this work choose to make.

Reply to this comment

[–] Shared libraries
Posted Nov 24, 2025 17:31 UTC (Mon) by fishface60 (subscriber, #88700)
[Link]

> If distros want ecosystems to be more friendly to them, they need to put in
the (large) amount of work to make that happen. It’s not impossible, but it is
very difficult, and it has ecosystem-wide implications. Until they do, they
get to use whatever the people who do do this work choose to make.

Hopefully the likes of Canonical, Red Hat or possibly Valve will step up to
fund this, since it doesn't seem realistic to expect volunteer distributions like
Debian to do the work.

Reply to this comment

[–] Shared libraries
Posted Nov 24, 2025 17:49 UTC (Mon) by bluca (subscriber, #118303)
[Link] (63 responses)

> Rebuilding packages when their dependencies change is the future.

Then the future is shite

Reply to this comment

[–] Shared libraries
Posted Nov 24, 2025 18:07 UTC (Mon) by Wol (subscriber, #4433) [Link]
(19 responses)

> > Rebuilding packages when their dependencies change is the future.

> Then the future is shite

Or you go back to what I was doing over 40 years ago, when a library was
just that ...

Yes you'll need some thought about how to update it into the modern
world, but you static link and your library is a bunch of .o's that get copied
in.

Yes you need to rebuild your applications, but the compile load is so much
lower.

And if you really want to sort-of-merge your compiler and linker, okay you
won't be able to mix-n-match compilers in all likelihood, but instead of .o's
you compile the library to intermediate compiler representation, optimise
whatever hell you can out of it, and then dump that into a .lib file that the
compiler can pull into the application.

Okay, you lose the ability to just drop in a new fixed library, that fixes all
your apps in one hit, but how well does that really work in practice?

Cheers,
Wol

Reply to this comment

[–] Shared libraries
Posted Nov 24, 2025 20:12 UTC (Mon) by ballombe (subscriber, #9523)
[Link] (12 responses)

> Okay, you lose the ability to just drop in a new fixed library, that fixes
all your apps in one hit, but how well does that really work in practice?

It work pretty well. For example each time a new CVE is fixed in libtiff,
the libtiff library is upgraded and there is no need to rebuild every
software that directly or indirectly process TIFF files.

Making very costly to apply a security fix does not increase security.

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 8:54 UTC (Tue) by taladar (subscriber, #68407)
[Link] (7 responses)

Oddly enough none of the distros that advocate for this approach
officially cover the part of that process that needrestart does, i.e. actually
tell the user what needs to be restarted to get the benefit of that update.

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 9:45 UTC (Tue) by leromarinvit (subscriber,
#56850) [Link] (6 responses)

Is that so? My Debian and Ubuntu systems will often restart services
after installing updates. Does this not cover shared library updates - i.e.
is a service only restarted after it itself was updated? Genuinely
curious, I've always just assumed dependencies would also trigger
restarts (at least if they're shared libs).

If they don't, just setting APT to auto-install security updates, without
somehow restarting individual services or the whole system
afterwards, is clearly not enough to at least keep a system free of
known (and fixed) vulnerabilities.

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 10:03 UTC (Tue) by taladar (subscriber,
#68407) [Link]

There is that "Daemons using outdated libraries" thing that
sometimes pops up but it only covers a small subset of the running
binaries or even systemd services actually using updated files.

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 10:05 UTC (Tue) by epa (subscriber, #39769)
[Link] (4 responses)

Yes, that's the shameful secret of security updates in shared libraries.
We've long mocked the Microsoft approach of rebooting the device
for every change, but it's hard to beat if you want to guarantee that
the vulnerable code is no longer running anywhere on the system.

In principle a program could be re-linked against the new shared
library code while it stays running, but that requires an even stronger
ABI stability guarantee than most libraries provide.

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 11:26 UTC (Tue) by SLi (subscriber, #53131)
[Link] (3 responses)

Hmm. Why is this a shared vs static library problem? Doesn't the
application need to be restarted in either case to get the benefits?

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 14:02 UTC (Tue) by farnz (subscriber,
#17727) [Link] (2 responses)

The claim being made for shared libraries is that I can just update
the library, and all the applications are immediately patched, which
reduces admin effort as compared to static linking, where I have to
update the binaries and then restart the applications.

The point is that it's not that big a reduction in effort - and it's a
reduction in effort in the automated part, to boot.

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 14:59 UTC (Tue) by intelfx (subscriber,
#130118) [Link] (1 responses)

> The claim being made for shared libraries is that I can just
update the library, and all the applications are immediately
patched, which reduces admin effort as compared to static
linking, where I have to update the binaries and then restart the
applications.

Nobody is making the claim for shared libraries to somehow
obviate the need to *restart the applications*. You invented this
claim out of thin air.

Shared libraries obviate the need to *update the binaries*, no
more, no less.

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 15:12 UTC (Tue) by farnz (subscriber,
#17727) [Link]

They don't even do that - you have to update the binaries that
are supplied by the shared library, and the in-memory copies of
the binaries, too.

The only thing they do is mean that you don't have to replace
the executables - but replacing binaries (libraries or
executables) is the bit of the update process that's simple to
automate.

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 12:17 UTC (Tue) by NAR (subscriber, #1313)
[Link] (3 responses)

Don't forget that it goes the other way too: introduce one bug into libtiff
and now all libtiff-using programs on your system have the bug. It's not
unheard that new versions of libraries have (new) bugs... I'd even be
inclined to think it happens more often that a shared library introduces a
bug than it fixes an actual, exploitable security vulnerability.

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 14:06 UTC (Tue) by farnz (subscriber, #17727)
[Link] (2 responses)

And there's a particularly nasty subset of that, induced by the increased
scope of feature unification.

Imagine a new version of libtiff which introduces a security-relevant
bug into the decompressor for TIFF compression scheme 32809
(ThunderScan 4-bit RLE). Upstream's statically linked builds of the
program are not vulnerable, because they don't enable the bits of libtiff
needed to handle files from ancient Macs, but because your distro
includes a utility that's supposed to analyse an ancient Mac disk image
and convert all the data to modern formats that you can work with,
your distro build of libtiff has this support enabled.

Hey presto, an application that was not vulnerable in the upstream
configuration (and may not be vulnerable on other distros that don't
support reading TIFF files from ancient Macs) is now vulnerable,
because you're running a configuration of the code that's necessary for
a different application.

Worst case, you've opened up a network-accessible vulnerability in an
application that was unaware that you could build libtiff this way, in
order to give more functionality to an application that's carefully
sandboxed in case the files are corrupt and trigger a bug.

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 15:10 UTC (Tue) by paulj (subscriber, #341)
[Link] (1 responses)

This one can easily be flipped the other way. Upstream statically
links in libtiff with legacy, bug ridden stuff enabled. When said bugs
become known, the distro updates the system shared library. All the
dynamically linked apps are now secured. Except of course your
statically linked upstream.

Which scenario is the more common? Which has the better track
record at quickly updating to fix bugs? The random statically linked
upstream-packaged apps or the Linux distros? I'd say the distros.

But let's say Linux distros are just average. Say we have 100
upstream-packaged statically-linked apps, and 100 apps using the
distro shared library... ~50 of the upstream apps will update before
the distro, and ~50 after - with a long tail. So - even if distros are not
very good at shipping security updates, the statically linked approach
will still leave you with a number of vulnerable apps for a long time
to come.

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 15:18 UTC (Tue) by farnz (subscriber,
#17727) [Link]

Oh yes - both ways round are possible.

Note that the distro is quite capable of using the dependency
information it already has (BuildRequires and the like) to rebuild
statically linked binaries - dynamically linked versus statically
linked is more about how much automated work has to be done to
get you a fixed version in place, rather than about which is "more
secure".

And I don't believe anyone has done the study to determine which is
actually more secure in practice - static linked executables, with
unused parts of libraries turned off, or dynamically linked
executables sharing a library with more used components. Once you
allow for things like time to determine that an update is needed, it's
quite a complex space to think about, and (like so much in
computing), we're more going on "what feels right" than on hard
data.

Reply to this comment

[–] Shared libraries
Posted Nov 24, 2025 20:25 UTC (Mon) by ebee_matteo (subscriber,
#165284) [Link] (5 responses)

> > > Rebuilding packages when their dependencies change is the future.

> > Then the future is shite

> Or you go back to what I was doing over 40 years ago, when a library
was just that ...

You can also go back at the beginning of UNIX and use IPC across small
binaries to perform tasks. Many people here still like their pipes on the
shell.

I see it a good pattern in keeping programs small and then using IPC to
make them communicate, via pipes / sockets and gRPC / varlink / DBus /
anything.

That for me would be a better future...

Reply to this comment

[–] Shared libraries
Posted Nov 24, 2025 20:37 UTC (Mon) by willy (subscriber, #9762)
[Link] (4 responses)

Ok, but each of those Unix tools needs to parse its command line
options, yes? So do we hand-roll an option parser in each tool, or do we
share the code to do that in a library? If we share the code, do we
dynamically or statically link it?

At this point I hope you realize you've merely restated the problem, not
solved it.

Reply to this comment

[–] ABI stability funding
Posted Nov 24, 2025 21:29 UTC (Mon) by DemiMarie (subscriber,
#164188) [Link] (3 responses)

The problem is real. The funding to solve it is missing.

Server software is often shipped as containers nowadays, and
containers don’t benefit much from dynamic linking. In fact, static
linking is often considered a benefit in the server world due to ease of
deployment.

Embedded systems do benefit from dynamic linking, and Android uses
dynamic linking for its Rust crates. However, updates for embedded
devices are usually complete images, so ABI stability is of very little
value. The only advantage would be allowing binary dependencies to
use Rust APIs.

The systems that benefit greatly from ABI stability are “traditional”
distros with mutable root filesystems. However, none of them have
been willing to fund the needed improvements. Furthermore, many of
these distros are run by volunteers.

Like fishface60, I hope that Canonical, SUSE, Red Hat, or Valve steps
up and funds a solution.

Reply to this comment

[–] ABI stability funding
Posted Nov 24, 2025 23:17 UTC (Mon) by bluca (subscriber,
#118303) [Link]

> Server software is often shipped as containers nowadays, and
containers don’t benefit much from dynamic linking.

Except of course that's not really true, as proven by companies like
Redhat spending tons of dev time to implement very, very complex
solutions to post-facto deduplicate said containers, because that
whole docker mess doesn't really scale beyond a handful of instances.
Storage, memory and loading time costs are through the roof because
of the intense duplication.

Reply to this comment

[–] ABI stability funding
Posted Nov 25, 2025 8:58 UTC (Tue) by taladar (subscriber,
#68407) [Link] (1 responses)

I would argue that the funding isn't there because you can only lose in
terms of performance and language capability when you remove any
inlining and use of generics across crates. Most likely you would end
up with the same "hope and pray it works" approach that C++ is
using but it would work less reliably in languages like Rust that use
generics and optimizations (e.g. struct field reordering) even more
than C++ uses templates.

Reply to this comment

[–] ABI stability funding
Posted Nov 25, 2025 13:35 UTC (Tue) by khim (subscriber, #9252)
[Link]

The funding is not there because there are no actor who may benefit
from that work and have some money to spare.

Google and Microsoft don't have an incentive to fund anything like
that because they are not providing Rust ABIs (at least not yet) and
distros are not in position to develop anything and don't even feel
it's their responsibility to develop anything.

Story about “awful inlining” is entirely moot point: you have the
same thing with dyn Trait already, what this would would do, in
terms of the language is to bring dyn Trait to parity with impl
Trait, if you want inlining then simply don't use dyn Trait and
you are done.

Reply to this comment

[–] Shared libraries
Posted Nov 24, 2025 18:42 UTC (Mon) by keithp (subscriber, #5140)
[Link] (24 responses)

I've come to accept the reality that compiling parametric polymorphic
languages (like Rust and C++) inherently eliminates any notion of strong
ABI. To avoid just stuffing everything in boxes and using virtual dispatch
for all operations, you have to codegen functions using the concrete type.

So, you either get responsible language design with actual type checking
across interfaces, or you get shared libraries. I haven't seen any plan for
getting both. It kinda sucks, but given that I have to make a choice, I know
which I'm willing to accept.

At this point, I'd assume any time a package using Rust anywhere should
trigger a rebuild of any reverse dependencies, at least until policy tells us
how to avoid that.

Reply to this comment

[–] Shared libraries
Posted Nov 24, 2025 18:57 UTC (Mon) by ballombe (subscriber, #9523)
[Link] (8 responses)

Then there should be a subset of rust without parametric polymorphism.
This is not required to replace C code.

Reply to this comment

[–] Shared libraries
Posted Nov 24, 2025 21:05 UTC (Mon) by DemiMarie (subscriber,
#164188) [Link]

And nobody is going to use it. Too much code would have to be
duplicated.

Reply to this comment

[–] Shared libraries
Posted Nov 24, 2025 21:27 UTC (Mon) by mb (subscriber, #50428)
[Link]

It's called "extern C".
You can basically do almost all the things you can do in C. Including
dynamic linking.

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 12:02 UTC (Tue) by farnz (subscriber, #17727)
[Link] (5 responses)

The problem is more than just parametric polymorphism; it's things like
defined constants, semantic meaning of functions and more.

Polymorphism is absolutely fine as long as you are aware that this
means that the polymorphic parts of your library live in the caller's
binary, not in your binary. Same with defined constants in a header,
struct layout etc.

The thing that you need is something that tells you when you've
modified something that will be in the caller's binary, not your binary, so
that you can undo that breakage. Ideally, you'd also have a way to
"shim" your new library, so that old binaries can still link against the
new library, and go via the shim that fixes things up so that they
continue to work without a rebuild.

But this is a really hard tool to develop; there's a lot hiding in those two
sentences. Even just doing the "modified something that will cause
breakage" for static linking is hard; and dynamic linking ups the
difficulty a notch.

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 13:38 UTC (Tue) by khim (subscriber, #9252)
[Link] (4 responses)

> Polymorphism is absolutely fine as long as you are aware that this
means that the polymorphic parts of your library live in the caller's
binary, not in your binary.

This would only work if your library provides ABI without things like
Option or Result… and ABI that doesn't use these is as almost far
from idiomatic Rust as "C"

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 13:56 UTC (Tue) by farnz (subscriber, #17727)
[Link] (3 responses)

Why? Option and Result can be fully monomorphized in your API,
in which case there's no polymorphic parts (even though pub struct
Foo<T>(Option<T>) is polymorphic, pub struct Foo(Result<u32,
MyError>) is not).

Second, I didn't say that you can't have polymorphism; I said that you
have to be aware that your polymorphic components live outside your
binary. You can have, for example, pub fn foo<P: AsRef<Path>>
(path: P) -> u32 { foo_impl(path.as_ref() }, as long as you
are happy that foo is inlined into the caller's binary, while fn
foo_impl(path: &Path) -> u32 is in your binary.

The important part is that you're aware of what's in your dynamic
library, and what's outside it, and that you have a way to cope with
the subset of your code that's in the caller not changing when your
dynamic library changes. That might be shims and symbol versions
like glibc, or not changing things once they've been exposed in a way
that breaks the ABI.

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 14:32 UTC (Tue) by khim (subscriber, #9252)
[Link] (2 responses)

> Option and Result can be fully monomorphized in your API

Yes. But not with Rust as it exists today.

> in which case there's no polymorphic parts (even though pub
struct Foo<T>(Option<T>) is polymorphic, pub struct
Foo(Result<u32, MyError&ht;) is not).

Even pub struct Foo(Result<u32, MyError>) is polymorphic
because it depends on a compiler version. Compile is free to change
the representation of pub struct Foo(Result<u32, MyError>) at
any time, in fact nightly have a flag to do that and stable does it
from time, to time, too.

> That might be shims and symbol versions like glibc, or not
changing things once they've been exposed in a way that breaks the
ABI

Well… compiler upgrade [potentially] break ABI which means you
would have to specify precisely which version of the compiler
defines it… and never upgrade.

RenderScript tried that and died as a result, Apple ended up in the
exact same potion, etc.

You couldn't build a stable platform on a quicksand.

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 15:09 UTC (Tue) by farnz (subscriber,
#17727) [Link] (1 responses)

Sure, you'd need the compiler to not break things that are marked
as ABI - and you'd have to accept that the stable ABI is not
necessarily as efficient as the unstable ABI.

Indeed, you might well end up with a v1, v2, v3 etc stable ABI,
where v1 is what we thought was good enough next year, v2 is a
decade later with all the small improvements that we've
accumulated since v1 was marked stable, with downstream users
deciding when it's worth moving to a new version of the ABI and
breaking older binaries - or even provide a stable ABI v1 shim that
uses the stable ABI v5 code to implement things, and does
whatever is needed to get compatibility (copies of data structures
etc).

But that's something the compiler team has to commit to. None of
this works if the compiler team won't stabilize the ABI (replacing
the compiler version dependency with a stable ABI version
dependency).

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 15:18 UTC (Tue) by khim (subscriber,
#9252) [Link]

> But that's something the compiler team has to commit to. None
of this works if the compiler team won't stabilize the ABI
(replacing the compiler version dependency with a stable ABI
version dependency).

Then what's the point of limiting the whole thing to statically
known types? Polymorphic ABIs work with the compiler buy-in
just fine: there are Swift, C#, Java, Ada… it's not a rocket
science, it's well-tested tech. Know for decades, not years.

Reply to this comment

[–] Shared libraries
Posted Nov 24, 2025 21:16 UTC (Mon) by zyga (subscriber, #81533)
[Link] (8 responses)

This is not quite true. It is "just" insanely expensive to do well.

Apple paid for that support in Swift so that apps for their platforms can
benefit from base OS library updates without having to be rebuilt.

Rust and Go didn't have the money or desire to implement that,
respectively.

I recommend reading what Swift can do today, on Linux. You can load a
library with a type. Load another with a container and efficiently
instantiate container specialized with that type, all with dynamic
libararies and stable ABIs. It is compiler voodoo but it is not impossible.

I kind of think we are all doomed in the long run (e.g. imagine all of GTK
and Qt are written in rust and require a complete world rebuild for every
tiny update). IMO that is not scalable and the trend to move to Rust or
another langue like that, will bounce at some point.

Either someone steps in and does the heavy lifting to solve this problem,
or distributions will just grind down to a halt.

Reply to this comment

[–] Shared libraries
Posted Nov 24, 2025 21:50 UTC (Mon) by zyga (subscriber, #81533)
[Link] (2 responses)

Replying to myself. Apologies for not posting this above but it is well
worth reading. "How Swift Achieved Dynamic Linking Where Rust
Couldn't": https://faultlore.com/blah/swift-abi/

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 12:17 UTC (Tue) by paulj (subscriber, #341)
[Link] (1 responses)

I think that's pretty much exactly what keithp had in mind with "To
avoid just stuffing everything in boxes and using virtual dispatch for
all operations". I read his comment as fairly explicitly referring to the
"You can have (strong ABI AND expensive runtime) OR (limited
dynlib ABI AND compile time concrete implementation of parametric
types to obtain fast runtime)" dichotomy.

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 13:40 UTC (Tue) by khim (subscriber, #9252)
[Link]

You can have both (just not at the same time). That's what Swift does.

Reply to this comment

[–] Swift vs Rust ABI
Posted Nov 24, 2025 23:15 UTC (Mon) by DemiMarie (subscriber,
#164188) [Link] (2 responses)

Part of how Swift achieved ABI stability is to implicitly heap-allocate
data in certain situations. I don’t believe this is permitted in Rust. In
particular, Rust doesn’t require that a heap even exists.

Reply to this comment

[–] Swift vs Rust ABI
Posted Nov 25, 2025 2:11 UTC (Tue) by khim (subscriber, #9252)
[Link] (1 responses)

That can be solved by declaring that thing an “std-only” feature.

There's nothing impossible there, but it's a lot of work—means it's
unlikely to happen without serious funding… who can provide it?

Reply to this comment

[–] Swift vs Rust ABI
Posted Nov 25, 2025 6:52 UTC (Tue) by josh (subscriber, #17465)
[Link]

It's not just funding, because we've got a strong interest in trying it.
It's design, because the Swift design is a good source of inspiration
but not *exactly* what would work for Rust, in various different
ways.

We're working on it, though.

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 9:01 UTC (Tue) by taladar (subscriber, #68407)
[Link] (1 responses)

I mean lets be honest, if Qt were a Rust library it would also be much,
much smaller because it wouldn't re-implement an entire ecosystem of
dependencies inside the library itself the way it currently does in C++.

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 10:25 UTC (Tue) by intelfx (subscriber,
#130118) [Link]

> I mean lets be honest, if Qt were a Rust library it would also be
much, much smaller because it wouldn't re-implement an entire
ecosystem of dependencies inside the library itself the way it currently
does in C++.

It would have been smaller in source code, but not in binary, for
obvious reasons: it might not need to reimplement an ecosystem of
dependencies, but the object code generated from those dependencies
would still have to exist somewhere.

Unless, of course, it was a hypothetical *shared* Rust library, linking
to *shared* Rust libraries of those dependencies. Right.

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 14:23 UTC (Tue) by gspr (subscriber, #91542)
[Link] (5 responses)

Not knowing much about this, I've always wondered why a relatively
closed set of packages – like those that constitute a distro – couldn't be
transitively monomorphized *internally* in the set.

For example, take the directed graph of dependencies between Rust
packages in Debian. Pick any package that is not a library (i.e. not a
librust-foo-dev package). This package surely uses, in its dependencies,
either monomorphized versions of functions and types, or dynamic
dispatch. Note down all the monomorphized versions, and add them to a
list for each dependency. Traverse the graph in topological order, and
build these monomorphization lists for all dependencies. Then build all
library packages as shared objects with all of those monomorphic
instances explicitly stamped out (I understand there's no compiler support
for this at the moment, but it shouldn't be too hard to fake it by generating
stubs?). Will this not allow dynamic linking and bug-fixing in shared
objects *within* Debian at least? For a given compiler version, of course.
Non-Debian software that uses the libraries are no better off than before
(unless they happen to need the same monomorphizations), but they're
also no worse off.

I'm sure I'm overlooking something here, but I'd love to learn :)

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 14:39 UTC (Tue) by farnz (subscriber, #17727)
[Link] (4 responses)

The problem comes with updates. If you update (say) ripgrep to fix a
bug, and it uses a new monomorphization, that new monomorphization
can rely on a new monomorphization inside a library package, and so
on.

You end up with the same problem as the rebuild problem, since you
cannot determine ahead of time that no bug fixes will involve a new
monomorphization. You will probably reduce the number of total
rebuilds you need, but if you're unlucky, you won't.

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 14:43 UTC (Tue) by gspr (subscriber, #91542)
[Link] (3 responses)

> The problem comes with updates. If you update (say) ripgrep to fix a
bug, and it uses a new monomorphization, that new monomorphization
can rely on a new monomorphization inside a library package, and so
on.

Is that likely? Or, is it any more more likely than, say, a bugfix in a
classical C library needing to break the ABI?

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 14:46 UTC (Tue) by farnz (subscriber, #17727)
[Link] (2 responses)

If you're doing the change downstream, then yes it is quite likely -
something as "trivial" to upstream as "add a new variant to an error
enum" is a new monomorphization, with the resulting need to
recompile everything that knows the layout of that enum.

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 14:51 UTC (Tue) by gspr (subscriber,
#91542) [Link] (1 responses)

> If you're doing the change downstream, then yes it is quite likely -
something as "trivial" to upstream as "add a new variant to an error
enum" is a new monomorphization, with the resulting need to
recompile everything that knows the layout of that enum.

Definitely. But a similar change in a classical C library would be to
return a new error value. That wouldn't technically break the ABI,
but it would sure require depending packages to acquire knowledge
of the new error value. That would take *more* than just
recompiling.

I guess what I'm saying is that this approach doesn't always work,
but it's not much worse than the situation for classical C libraries.

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 14:59 UTC (Tue) by farnz (subscriber,
#17727) [Link]

Returning a new error value that was previously impossible is an
ABI break, in both C and Rust, unless it's clearly documented
beforehand that other errors are possible.

For example, if I truncate the error value to 8 bits to make it fit an
existing struct, because all known error values are under 255, and
you introduce error value 256, I've got a problem in C. This gets
worse in Rust, because enums aren't just a value, they can carry
data, too, so the enum may get larger as a result of the change, and
upstream won't care that the old enum compiled by Debian was 72
bytes, and the new one is 80 bytes - especially if compiled with a
newer compiler, they're both 64 bytes.

Reply to this comment

[–] Shared libraries
Posted Nov 24, 2025 19:03 UTC (Mon) by carlosrodfern (subscriber,
#166486) [Link] (7 responses)

Image a world where every single program in a distro is statically linked.
Imagine the logistic of delivering patches to all users, memory
consumption of binaries, program load time, configurability, etc... It might
not be felt in servers as much but it will definitely be felt in Desktops.

Reply to this comment

[–] Shared libraries
Posted Nov 24, 2025 22:25 UTC (Mon) by Cyberax (✭ supporter ✭,
#52523) [Link] (3 responses)

Why would this be complicated? You just recompile stuff and ship it. It
might force you to invest in more efficient packaging system, if anything.
There's no need to transmit 150Mb of data if you need to change 20 bytes
of code.

Android uses this for the OTA system updates.

Reply to this comment

[–] Shared libraries
Posted Nov 24, 2025 23:39 UTC (Mon) by carlosrodfern (subscriber,
#166486) [Link] (1 responses)

I'm actually pointing out the *problems* of doing all the things
statically linked, not advocating for it.

The fact that statically linked programs are a good solution in containers
doesn't mean that it can be extrapolated to an Linux distro. A slightly
change in the nature of a problem, or in the size of the problem, can
justifies a very different solution. It is a typical mistake that people
make as they get excited about one technology or approach and want to
apply it to all the things that like like a nail. Statically linked programs
written in golang or Rust for containers make a lot of sense since the
pros are weighty and the cons are not that significant in the context of
that use case, but it is not a good approach for all the programs in Linux
distros.

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 0:49 UTC (Tue) by Cyberax (✭ supporter ✭,
#52523) [Link]

> I'm actually pointing out the *problems* of doing all the things
statically linked, not advocating for it.

But it's not really a problem, is it? Binary diffs for patch update can
negate the advantages of shared libraries.

> The fact that statically linked programs are a good solution in
containers doesn't mean that it can be extrapolated to an Linux distro.

But maybe it can? I actually tried a fully static distro a while ago (
https://github.com/oasislinux/oasis), and it objectively felt _better_
than regular Debian.

I'm not at all convinced that shared libraries are worth all the hassle.

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 7:54 UTC (Tue) by joib (subscriber, #8541) [Link]

I think Ubuntu optionally supports using zsync for distribution changes
efficiently. Also some other non-distro packaged software I use, use it
for updating themselves. https://zsync.moria.org.uk/ I'm sure there are
other things that do something similar as well.

So the tech to do this efficiently already exists in open source, it just
needs to be integrated more deeply into distro package distribution
tooling.

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 6:39 UTC (Tue) by mb (subscriber, #50428) [Link]
(2 responses)

>memory consumption of binaries

negligible

>program load time

Probably faster with statically linked binaries.

>configurability

What?

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 11:11 UTC (Tue) by euclidian (subscriber,
#145308) [Link]

With memory and re-use i did have a super naive C linker / loader that
would statically link all programs and share identical functions on load
(it would take a hash over all the binary code in a function and all the
other functions it called and add them to an object store.).

Theoretically for basic cases when the binary gets recompiled with the
same static library you get the de-duplication from dynamic libraries
plus inlining and versioning working (just loosing the de-duplication).

I doubt it would ever work well enough for production use (first load of
a program) and i got side tracked dealing with edge cases but it might be

LWN
.net

News from the source

Content
Weekly Edition
Archives
Search
Kernel
Security
Events calendar
Unread comments

LWN FAQ
Write for us

https://lwn.net/subscribe/
https://salsa.debian.org/apt-team/apt#apt
https://lwn.net/ml/all/20251031213541.GA73786@debian.org/
https://lwn.net/ml/all/CAO6P2QQD8MDUTAo_F=kGfDsBF0Xv+Wv020dm-n-WGnb7ODYW-g@mail.gmail.com
https://lwn.net/ml/all/ad6e60711c8ed3372ed7f324d7b1be23b0722a0d.camel@physik.fu-berlin.de/
https://lwn.net/ml/all/afb7c58fb0fb995ebde3fb72b4cc4d1943a37923.camel@physik.fu-berlin.de/
https://lwn.net/ml/all/20251031223819.GA97356@debian.org
https://www.debian.org/ports/alpha/
https://www.debian.org/ports/m68k/
https://www.debian.org/ports/m68k/
https://www.debian.org/ports/hppa/
https://wiki.debian.org/SH4
https://sequoia-pgp.org/
https://packages.debian.org/trixie/sqv
https://openpgp.dev/book/signatures.html
https://packages.debian.org/trixie/gpgv
https://lwn.net/Articles/1045363/
https://lwn.net/Articles/1045363/
https://www.debian.org/ports/#:~:text=List%20of%20official%20ports,-These
https://lwn.net/ml/all/708d1a6e63d53242cf89f01c2d791e91f1eccab6.camel@physik.fu-berlin.de/
https://rust-for-linux.com/rustc_codegen_gcc
https://lwn.net/Articles/954787/#codegen_gcc
https://salsa.debian.org/apt-team/apt/-/commits/main?author=David%20Kalnischkies
https://lwn.net/ml/all/sdi72zvp4koyi7h7wo2bwslds2j466ix4sar7wuaks3szphjmp@xg6itydwhqbp/
https://manpages.debian.org/trixie/apt-utils/apt-ftparchive.1.en.html
https://manpages.debian.org/trixie/apt-utils/apt-extracttemplates.1.en.html
https://launchpad.net/
https://discourse.ubuntu.com/t/migration-to-rust-coreutils-in-25-10/59708
https://lwn.net/Articles/1014002/
https://lwn.net/Articles/1014002/
https://lwn.net/ml/all/aQkl0qyIyJ5+y5lC@localhost/
https://www.debian.org/releases/trixie/release-notes/issues.html#go-and-rust-based-packages
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=1106154#10
https://lwn.net/ml/all/c818f7ef-eff7-40ac-b153-a88412f71d86@app.fastmail.com/
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=1069256
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=1069256
https://www.debian.org/intro/why_debian
https://www.debian.org/ports
https://wiki.debian.org/LTS
https://www.debian.org/devel/constitution
https://www.debian.org/devel/tech-ctte
https://lwn.net/Articles/1041316/
https://lwn.net/Articles/1041316/
https://mvogt.wordpress.com/2015/11/30/apt-1-1-released/
https://repolib.readthedocs.io/en/latest/deb822-format.html
https://lwn.net/ml/all/20211103163429.GA3688731@debian.org/
https://lwn.net/ml/all/20211103163429.GA3688731@debian.org/
https://lwn.net/Articles/1017315/
https://rust-gcc.github.io/
https://lwn.net/Articles/1047714/
https://lwn.net/Articles/1047720/
https://lwn.net/Articles/1047730/
https://lwn.net/Articles/1047719/
https://lwn.net/Articles/1047722/
https://rust-gcc.github.io/
https://github.com/rust-lang/rustc_codegen_gcc
https://lwn.net/Articles/1047700/
https://lwn.net/Articles/1047732/
https://lwn.net/Articles/1047736/
https://lwn.net/Articles/1047739/
https://lwn.net/Articles/1047746/
https://lwn.net/Articles/1047768/
https://lwn.net/Articles/1047828/
https://lwn.net/Articles/1047834/
https://lwn.net/Articles/1047844/
https://lwn.net/Articles/1047846/
https://lwn.net/Articles/1047859/
https://lwn.net/Articles/1047870/
https://lwn.net/Articles/1047954/
https://lwn.net/Articles/1047957/
https://lwn.net/Articles/1047862/
https://lwn.net/Articles/1047869/
https://lwn.net/Articles/1047956/
https://lwn.net/Articles/1047958/
https://lwn.net/Articles/1047772/
https://lwn.net/Articles/1047773/
https://lwn.net/Articles/1047781/
https://lwn.net/Articles/1047736/
https://lwn.net/Articles/1047795/
https://lwn.net/Articles/1047829/
https://lwn.net/Articles/1047872/
https://lwn.net/Articles/1047755/
https://lwn.net/Articles/1047758/
https://lwn.net/Articles/1047777/
https://lwn.net/Articles/1047783/
https://lwn.net/Articles/1047845/
https://lwn.net/Articles/1047874/
https://lwn.net/Articles/1047875/
https://lwn.net/Articles/1047883/
https://doc.rust-lang.org/nightly/unstable-book/compiler-flags/randomize-layout.html
https://godbolt.org/z/3odsGvWoz
https://godbolt.org/z/3odsGvWoz
https://en.wikipedia.org/wiki/RenderScript
https://developer.apple.com/documentation/xcode-release-notes/xcode-15-release-notes
https://developer.apple.com/documentation/xcode-release-notes/xcode-15-release-notes
https://lwn.net/Articles/1047889/
https://lwn.net/Articles/1047960/
https://lwn.net/Articles/1047780/
https://lwn.net/Articles/1047787/
https://faultlore.com/blah/swift-abi/
https://lwn.net/Articles/1047865/
https://lwn.net/Articles/1047876/
https://lwn.net/Articles/1047794/
https://lwn.net/Articles/1047811/
https://lwn.net/Articles/1047820/
https://lwn.net/Articles/1047830/
https://lwn.net/Articles/1047848/
https://lwn.net/Articles/1047882/
https://lwn.net/Articles/1047886/
https://lwn.net/Articles/1047890/
https://lwn.net/Articles/1047949/
https://lwn.net/Articles/1047952/
https://lwn.net/Articles/1047953/
https://lwn.net/Articles/1047760/
https://lwn.net/Articles/1047790/
https://lwn.net/Articles/1047797/
https://lwn.net/Articles/1047807/
https://github.com/oasislinux/oasis
https://lwn.net/Articles/1047823/
https://zsync.moria.org.uk/
https://lwn.net/Articles/1047818/
https://lwn.net/Articles/1047854/
https://lwn.net/
https://lwn.net/current/
https://lwn.net/current/
https://lwn.net/Archives/
https://lwn.net/Archives/
https://lwn.net/Search/
https://lwn.net/Search/
https://lwn.net/Kernel/
https://lwn.net/Kernel/
https://lwn.net/Security/
https://lwn.net/Security/
https://lwn.net/Calendar/
https://lwn.net/Calendar/
https://lwn.net/Comments/unread
https://lwn.net/Comments/unread
https://lwn.net/op/FAQ.lwn
https://lwn.net/op/FAQ.lwn
https://lwn.net/op/AuthorGuide.lwn
https://lwn.net/op/AuthorGuide.lwn

something I should poke again.

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 11:22 UTC (Tue) by LtWorf (subscriber,
#124958) [Link]

Loading time and memory usage are larger with static linking if we
remember that 1 process per machine is hardly a common usecase.

Reply to this comment

[–] Shared libraries
Posted Nov 24, 2025 19:27 UTC (Mon) by Cyberax (✭ supporter ✭,
#52523) [Link] (9 responses)

Yeah, just imagine a project with hundreds of components that have no
stable ABI between them, and even use dynamic loading to mask that
mess. It's a versioning nightmare, you can't do pinpoint updates of
individual components without recompiling everything.

Reply to this comment

[–] Shared libraries
Posted Nov 24, 2025 23:14 UTC (Mon) by bluca (subscriber, #118303)
[Link] (8 responses)

Sounds like a very well thought out project - of course as long as most of
the code is shared, and the hundreds of components are small so that
memory usage, disk usage and loading times are all minimized. In fact
that's how pretty much all Linux distributions of good quality are setup
nowadays - many many individual programs with little in common,
sharing a common subset of dynamic libraries

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 0:51 UTC (Tue) by Cyberax (✭ supporter ✭,
#52523) [Link] (7 responses)

But how do you make sure that a "Component A" works if the "Library
B" was replaced while "Component A" is running? Especially for
daemons that can stay up for a long time.

It's so much better to precompile everything into "Component A", so
that it need not care if anything on disk changes.

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 6:48 UTC (Tue) by koflerdavid (subscriber,
#176408) [Link] (3 responses)

Is that really such a big issue with existing packaging? Library B
should still be resident in memory and therefore Component A will
keep running. If Component A is incompatible with the new version of
Library B then Component A needs to be updated and restarted as well
of course.

Atomic distributions handle this by creating a new file system image in
the background, and the user boots into the updated system.

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 9:06 UTC (Tue) by taladar (subscriber,
#68407) [Link] (2 responses)

From practical experience on both my desktop (Gentoo) and various
servers (Debian and RHEL) crashes and misbehaving programs due
to updated dependencies happen all the time, I encounter one at least
1-2 times a week. Granted, it is not always the library part that is the
problem but often files that weren't in memory at all at the time of the
update that the library assumes it can load but the end result is the
same.

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 14:37 UTC (Tue) by NightMonkey
(subscriber, #23051) [Link]

From my experience, Gentoo does a great job of recompiling
packages that need shared library updates. :shrug: Perhaps you need
to change your upgrading patterns? :)

For example, I use this to upgrade religiously:

emerge -uDNv --with-bdeps y system world --keep-going --jobs --
load-average 8

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 15:26 UTC (Tue) by ballombe (subscriber,
#9523) [Link]

This is very unusual, otherwise Debian would be flooded by bug
reports.

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 6:53 UTC (Tue) by josh (subscriber, #17465)
[Link] (2 responses)

> But how do you make sure that a "Component A" works if the
"Library B" was replaced while "Component A" is running?

Whether you're dealing with a replacement of component A, or a
replacement of library B, either way, you *always* write to a
temporary file and rename over the original, so that the old inode still
exists as the source of the mmap'd code, and then restart A. Writing
over the original will cause segfaults.

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 9:08 UTC (Tue) by taladar (subscriber,
#68407) [Link] (1 responses)

Oddly enough none of the distros like Debian include a core
component that checks which A needs to be restarted after upgrades.
We have been using needrestart for that for years but it seems like a
problem none of the distros even attempt to solve.

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 12:03 UTC (Tue) by draco (subscriber,
#1792) [Link]

Fedora Server edition installs Cockpit, which uses needrestart.
Though it still waits for the admin to invoke the restarts.

Reply to this comment

[–] Shared libraries
Posted Nov 24, 2025 19:22 UTC (Mon) by ibukanov (subscriber, #3942)
[Link] (4 responses)

The big difference between C++ and Rust is that the former has stable ABI
while the former lacks those. Of cause even with Rust one can expose things
across shared libraries using C-ABI, but then Rust code calling such C-
based API will have to use unsafe when calling those even when the
implementation is fully safe. With C++ if one avoids templates one can use
class-based API including support for virtual functions that can be called
across shared library boundaries.

Reply to this comment

[–] Shared libraries
Posted Nov 24, 2025 20:20 UTC (Mon) by ojeda (subscriber, #143370)
[Link]

There is no standard C++ ABI, though vendors try to help to some degree.

As for unsafe calls, that is the same as in C++, i.e. every call is unsafe.

By the way, in Rust you can easily specify nowadays that an external
function is safe, e.g.

unsafe extern "C" {
 safe fn f();
}

Reply to this comment

[–] Shared libraries
Posted Nov 24, 2025 20:20 UTC (Mon) by ebee_matteo (subscriber,
#165284) [Link] (2 responses)

> the former has stable ABI

Except when it hasn't.

ARMv5 ABI changed after GCC 7 (we all love our -Wno-psabi).

C++11 also broke ABI in several ways. See GCC 5 and the libstdc++
versioning fiasco. `_GLIBCXX_USE_CXX11_ABI` for the win.

GCC 11 broke ABI with GCC 10 due to std::span.

jmp_buf has different ABI for s390 after glibc 2.19.

I can cite more.

Yes, C++ has slightly better ABI guarantees than Rust, but mostly just
because its usage is widespread enough, across so many decades, that it
came to be that way /de facto/ after people spent years fighting with ABI
problems.
In fact, I am not aware of a standardised ABI for C++ at all.

And as other people have pointed out, you still have the issue of macros
and templates to solve when you use the C++ headers.

C is the closest we have to a stable ABI, assuming the same macros are
defined at the time of inclusion.

And you can write Rust programs exporting C mangled functions, and that
works just fine also to produce shared libs. But that's the best you can do as
of today.

I guess at some point the pressure will be enough for Rust to standardize
something resembling an ABI, but the widespread use of
monomorphization makes it extremely tricky to do. C++ already had
enough of problems with the infamous "extern template" feature of C++98,
and now with C++ modules. Which, years after standardization, mostly
still do not work.

Reply to this comment

[–] Shared libraries
Posted Nov 24, 2025 22:48 UTC (Mon) by randomguy3 (subscriber,
#71063) [Link] (1 responses)

Just to add to the list, we had cause to discover at work that appleclang
had a subtle C++ ABI break between two minor versions of its compiler
(I think it was between 14.0.0 and 14.0.3).

Reply to this comment

[–] Shared libraries
Posted Nov 24, 2025 23:06 UTC (Mon) by ballombe (subscriber,
#9523) [Link]

Given Apple track record at this point, what would be noteworthy is a
XCode release that does not introduce new bugs. A subtle ABI breakage
is the minimum to expect.

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 11:20 UTC (Tue) by nim-nim (subscriber, #34454)
[Link] (1 responses)

> If distros want ecosystems to be more friendly to them, they need to put in
the (large) amount of work to make that happen.

Why should they ? The same developer-friendly argument was made for
Java software, the same refusal to invest in a mechanism to share
components and stabilise ABIs was advanced by Java developers, the same
hostility to distribution best practices was trumpeted right and left.

Fast forward twenty years the technical debt come due and no one can leave
the Java boat fast enough. Turns out, refactoring vast piles of vendored,
forked and obsolescent code, with no clear lines of demarcation because no
one enforced ABI separation for a long time, is completely unappealing. You
can ignore problems a long time they come back with a vengeance.

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 13:46 UTC (Tue) by khim (subscriber, #9252) [Link]

> Fast forward twenty years the technical debt come due and no one can
leave the Java boat fast enough.

You live in some imaginary universe. On our universe Java is number
three language, behind JavaScript and Python, but ahead of PHP, it's used
by the most popular OS and no one thinks about abandoning it… sure,
people like to grumble about Java problems… they use Java, nonetheless.

> You can ignore problems a long time they come back with a vengeance.

Isn't that what you are doing here?

Reply to this comment

[–] Shared libraries
Posted Nov 24, 2025 17:50 UTC (Mon) by farnz (subscriber, #17727) [Link]

In the short term, there's experiments like stabby and abi_stable looking at
what it means to provide a well-defined ABI for a shared library written in
Rust and intended to be consumed by other Rust programs.

There's also work coming from the other direction, of providing a way to
deliberately indicate that you intend something to be ABI, and widening the
number of things that have a stable ABI, which will hopefully meet the efforts
to determine what a stable ABI definition "should" look like in the middle.

Unfortunately, all this takes time, motivation, and a lot of work; without more
people helping, I could see it taking some time to get there.

Reply to this comment

[–] Shared libraries
Posted Nov 24, 2025 18:48 UTC (Mon) by hunger (subscriber, #36242)
[Link] (6 responses)

> C++ support shared libraries and rust could in principle support them too.

Does it? Yes, it works most of the time, but that is by luck and not by design.

The headers used to build some binary contain lots of code that gets backed
into the binary (e.g. all templates). If any of those get changed by the next
version of the library, then you can spent fun times debugging crashes as
suddenly the code baked into the binary from the old version fails to use some
symbol backed into the new library.

There is a reason why most distros rebuild binaries when the dependencies
change.

Yes, rust could do the same. Rust has a different culture so it won't.

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 2:22 UTC (Tue) by Elv13 (subscriber, #106198)
[Link] (3 responses)

The same is true for C, but the ABI surface is smaller. `enum SecurityMode
{LEGACY, SECURE, DISABLED};` sometime accidentally switch to
`enum SecurityMode {LEGACY, SECURE, SUPER_STRICT,
DISABLED};` in some of your dependency point release. Some libraries
have a vast number of headers, beyond what a human can review. The API is
compatible, but you just silently introduced a severe security regression in
any package not rebuilt. Thankfully, this is a tooling issue and `libabigail`
exists for C/C++. So most distribution have the means to track what needs to
be rebuilt if they integrate those tools. Template code makes the problem
worse, but it not solely a C++ problem.

I am not familiar with the tooling Rust has to track ABI breakages, but I
assume it could be handled using tooling rather than try to maintain a stable
shared library ABI across versions.

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 2:46 UTC (Tue) by khim (subscriber, #9252) [Link]
(2 responses)

> I assume it could be handled using tooling rather than try to maintain a
stable shared library ABI across versions.

Not really. One example: let's convert your enum SecurityMode {LEGACY,
SECURE, DISABLED}; to Rust and add Option<…&rt; wrapping. And now
look on how different versions of Rust thread that. Nice, isn't it? The same
effect that you just described—but without any source changes, just with
different compiler. And no, release notes wouldn't save you, either, there
are nothing in them about this change.

> I am not familiar with the tooling Rust has to track ABI breakages

Easy: it doesn't exist. cargo_semver_checks is very through, but it only
tracks source compatibility. Never binary. Stable ABI doesn't exist, period.

There was some interest in development of such ABI, but effort have
stalled.

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 9:12 UTC (Tue) by taladar (subscriber, #68407)
[Link] (1 responses)

Considering the number of edge cases the cargo-semver-checks author
constantly documents on his blog even at the API level I doubt an
approach that would satisfy Rust's high standard for correctness will ever
exist at the ABI level.

It mostly works in C and C++ since those seem to have much lower
standards for what they consider 'working'.

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 13:49 UTC (Tue) by khim (subscriber, #9252)
[Link]

With Swift approach (roughly: make dyn Trait as capable as impl
Trait at the cost of implementation speed) there would be no material
difference between ABI stability checks and API stability checks.

Sure, it would be a bit work to provide stable ABI and most crates
wouldn't bother, but if someone want to create a “Rust platform”
(similarly to how iOS and macOS are “Swift platforms”) then it's
perfectly doable if costly.

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 11:37 UTC (Tue) by SLi (subscriber, #53131) [Link]
(1 responses)

> There is a reason why most distros rebuild binaries when the dependencies
change.

The claim that this is not sustainable for Debian also seems strange, given
that a lot of distros do manage to do it (including non-commercial ones like
NixOS).

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 15:02 UTC (Tue) by intelfx (subscriber, #130118)
[Link]

> The claim that this is not sustainable for Debian also seems strange,
given that a lot of distros do manage to do it (including non-commercial
ones like NixOS).

> given that a lot of distros do manage to do it (including non-commercial
ones like NixOS).

NixOS is only managing to do it because commercial sponsors dump
relatively huge money into operation of their CI and binary cache.

Same also goes for other "non-commercial" distros — if you look closer,
you'll find they all have commercial sponsors subsidizing the
infrastructure.

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 0:34 UTC (Tue) by pabs (subscriber, #43278) [Link] (2
responses)

Rust already supports shared libraries (dylib), IIRC the ABI is not yet stable
though.

https://doc.rust-lang.org/reference/linkage.html

The problem though is the culture of the Rust ecosystem; much of it prefers
static linking, dislikes distros and probably would reject patches to introduce
dylibs for each package.

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 4:14 UTC (Tue) by xnox (subscriber, #63320) [Link]
(1 responses)

It is somewhat limited in its use.

It doesn't provide stable abi - one can use them to share code across multiple
related binaries, think private .so

It also is unsafe and removes type checking - which defeats the point of rust
to begin with.

Reply to this comment

[–] Shared libraries
Posted Nov 25, 2025 10:55 UTC (Tue) by joib (subscriber, #8541) [Link]

If it's just across multiple related binaries, wouldn't a better approach be to
use a multi-call binary like AFAIU uutils is using (or busybox for an
example in C land)?

Reply to this comment

Copyright © 2025, Eklektix, Inc.

Comments and public postings are copyrighted by their creators.

Linux is a registered trademark of Linus Torvalds

LWN
.net

News from the source

Content
Weekly Edition
Archives
Search
Kernel
Security
Events calendar
Unread comments

LWN FAQ
Write for us

https://lwn.net/Articles/1047858/
https://lwn.net/Articles/1047766/
https://lwn.net/Articles/1047793/
https://lwn.net/Articles/1047808/
https://lwn.net/Articles/1047819/
https://lwn.net/Articles/1047831/
https://lwn.net/Articles/1047887/
https://lwn.net/Articles/1047961/
https://lwn.net/Articles/1047821/
https://lwn.net/Articles/1047832/
https://lwn.net/Articles/1047863/
https://lwn.net/Articles/1047761/
https://lwn.net/Articles/1047770/
https://lwn.net/Articles/1047769/
https://lwn.net/Articles/1047791/
https://lwn.net/Articles/1047792/
https://lwn.net/Articles/1047855/
https://lwn.net/Articles/1047878/
https://redmonk.com/sogrady/2025/06/18/language-rankings-1-25/
https://redmonk.com/sogrady/2025/06/18/language-rankings-1-25/
https://lwn.net/Articles/1047733/
https://lib.rs/crates/stabby
https://docs.rs/abi_stable/latest/abi_stable/
https://github.com/m-ou-se/rfcs/blob/export/text/0000-export.md
https://github.com/m-ou-se/rfcs/blob/export/text/0000-export.md
https://github.com/rust-lang/rust/pull/105586
https://github.com/rust-lang/rust/pull/105586
https://lwn.net/Articles/1047757/
https://lwn.net/Articles/1047813/
https://lwn.net/Articles/1047814/
https://godbolt.org/z/3odsGvWoz
https://blog.rust-lang.org/2021/12/02/Rust-1.57.0/
https://blog.rust-lang.org/2021/12/02/Rust-1.57.0/
https://docs.rs/cargo-semver-checks/latest/cargo_semver_checks/
https://github.com/rust-lang/rfcs/pull/3470
https://lwn.net/Articles/1047833/
https://lwn.net/Articles/1047879/
https://lwn.net/Articles/1047860/
https://lwn.net/Articles/1047955/
https://lwn.net/Articles/1047805/
https://doc.rust-lang.org/reference/linkage.html
https://lwn.net/Articles/1047815/
https://lwn.net/Articles/1047852/
https://lwn.net/
https://lwn.net/current/
https://lwn.net/current/
https://lwn.net/Archives/
https://lwn.net/Archives/
https://lwn.net/Search/
https://lwn.net/Search/
https://lwn.net/Kernel/
https://lwn.net/Kernel/
https://lwn.net/Security/
https://lwn.net/Security/
https://lwn.net/Calendar/
https://lwn.net/Calendar/
https://lwn.net/Comments/unread
https://lwn.net/Comments/unread
https://lwn.net/op/FAQ.lwn
https://lwn.net/op/FAQ.lwn
https://lwn.net/op/AuthorGuide.lwn
https://lwn.net/op/AuthorGuide.lwn

