Example of using gdb and strace to find the cause of a
segmentation fault

Adrien Kunysz, Sun, 06 Mar 2011 18:17:12

This article describes how I diagnosed a segmentation fault in apt/aptitude. It shows some
basic usage of gdb and strace. We look at a bit of C code (C++ really) and x86 assembly
and we show that switching between tools may make analysis faster than when you just
stick to one.

The problem

A few weeks ago I was somehow logged into an Ubuntu system as root and while I was
doing what I was supposed to do, I noticed aptitude was not completing as expected. It
seems everything worked fine but it always ended up with a segmentation fault:

aptitude install strace

Reading package lists... Done

Building dependency tree

Reading state information... Done

Reading extended state information

Initializing package states... Done

No packages will be installed, upgraded, or removed.

@ packages upgraded, @ newly installed, @ to remove and 17 not upgraded.
Need to get @B of archives. After unpacking @B will be used.
Writing extended state information... Done

Segmentation fault

Notice how it basically did nothing (because there was nothing to do) then crashed. A
segmentation fault generally means the process attempted to access memory it shouldn't
have access to.

gdb

Naturally I reached for ulimit and tried again, installing the debug symbols at the same
time:

ulimit -c unlimited
aptitude install aptitude-dbg
[...]
The following NEW packages will be installed:
aptitude-dbg libcwidget3-dbg{a}
@ packages upgraded, 2 newly installed, @ to remove and 17 not upgraded.
Need to get 7,668kB of archives. After unpacking 25.7MB will be used.
Do you want to continue? [Y/n/?] y
[...]
Selecting previously deselected package aptitude-dbg.
(Reading database ... 41701 files and directories currently installed.)
Unpacking aptitude-dbg (from .../aptitude-dbg_0.4.11.11-1lubuntul®@_amd64.deb)
Selecting previously deselected package libcwidget3-dbg.
Unpacking libcwidget3-dbg (from .../libcwidget3-dbg_0.5.13-1ubuntul_amdé4.deb)
Setting up aptitude-dbg (©.4.11.11-1ubuntul®)
Setting up libcwidget3-dbg (©.5.13-1lubuntul)
Segmentation fault (core dumped)

Well, at least it can install stuff. The ulimit bash built-in allows you to change some
system limits. By default on that system, the maximum core size was set to 0. By running
ulimit -c unlimited, we told the system to dump a core whenever a process encounters
a segmentation fault. The core is essentially an image of the memory of the process at the
time of the problem.

However, to examine a core we generally need debug symbols for the faulty program. This
is what is contained in the package aptitude-dbg we just installed.

Let's have a look at that core:

gdb “which aptitude’ core
Reading symbols from /usr/bin/aptitude...Reading symbols from /usr/lib/debug/usr/bin/aptitude...done.
done.
[New Thread 1690]
[New Thread 1691]
[...]
Core was generated by “aptitude install aptitude-dbg'.
Program terminated with signal 11, Segmentation fault.
#0 0x00007fab30590alf in __ fprintf_chk () from /lib/libc.so.6
(gdb) bt
#0 0x00007fab30590alf in __fprintf_chk () from /lib/libc.so.6
#1 0x00007fab3216946d in pkgDPkgPM::Closelog() () from /usr/lib/libapt-pkg-1ibc6.10-6.s0.4.8
#2 0x00007fab3216fef@ in pkgDPkgPM::Go(int) () from /usxr/lib/libapt-pkg-libc6.10-6.50.4.8
#3 0x00007fab32120a85 in pkgPackageManager: :DoInstallPostFork(int) ()
from /usxr/lib/libapt-pkg-1libc6.10-6.50.4.8
#4 0x0000000000542e7a in download_install_manager::execute_install_run (this=@x7fff36beb760,
res=<value optimized out>, progress=<value optimized out>) at download_install_manager.cc:149
#5 0x0000000000543347 in download_install_manager::finish (this=0x@, res=pkgAcquire::Failed,
progress=...) at download_install_manager.cc:190
#6 0x0000000000507c67 in cmdline_do_download (m=0x7fff36beb760, verbose=<value optimized out>)
at cmdline_util.cc:404
#7 0x00000000004dd686 in cmdline_do_action (argc=<value optimized out>, argv=0Oxffffffff,
status_fname=0x7fff36bebb7d "\177", simulate=<value optimized out>,
assume_yes=<value optimized out>, download_only=<value optimized out>, fix_broken=false,
showvers=false, showdeps=<value optimized out>, showsize=<value optimized out>,
showwhy=<value optimized out>, visual_preview=false, always_prompt=<value optimized out>,
safe_resolver=false, no_new_installs=false, no_new_upgrades=false, user_tags=...,
arch_only=<value optimized out>, queue_only=false, verbose=0) at cmdline_do_action.cc:313
#8 0x000000000041bd39 in main (argc=3, argv=0x7fff36bec278) at main.cc:641

So we are really segfaulting in a variant of fprintf() in the glibc as called from
pkgDPkgPM: : CloseLog() (looks like C++) in libapt-pkg. The debug symbols we installed
are pretty much useless for this as they only cover aptitude and not libapt-pkg or the glibc
(notice how we have more detailed information from frame #4 while we are missing lot of
things above that).

It seems there is no apt-dbg package. This means we should rebuild apt with the debug
symbols to get a nice complete backtrace. I am far too lazy to do that. Maybe we can figure
it out just by looking at the code. A bug in apt seems more likely than in the glibc so let's
look at pkgDPkgPM: : CloseLog():

$ apt-get source apt

[...]

dpkg-source: info: extracting apt in apt-0.7.25.3ubuntu?

dpkg-source: info: unpacking apt_0.7.25.3ubuntu7.tar.gz

$ grep -1R Closelog apt-0.7.25.3ubuntu7/
apt-0.7.25.3ubuntu7/apt-pkg/deb/dpkgpm.cc
apt-0.7.25.3ubuntu7/apt-pkg/deb/dpkgpm.h

grep: apt-0.7.25.3ubuntu7/buildlib/config.sub: No such file or directory
grep: apt-0.7.25.3ubuntu7/buildlib/config.guess: No such file or directory
$ vi apt-0.7.25.3ubuntu7/apt-pkg/deb/dpkgpm.cc

640 bool pkgDPkgPM::Closelog()

641 {

642 char timestr[200];

643 time_t t = time(NULL);

644 struct tm *tmp = localtime(&t);

645 strftime(timestr, sizeof(timestr), "%F %T", tmp);

646

647 if(term_out)

648 {

649 fprintf(term_out, "Log ended: ");

650 fprintf(term_out, "%s", timestr);

651 fprintf(term_out, "\n");

652 fclose(term_out);

653 }

654 term_out = NULL;

655

656 string history_name = flCombine(_config->FindDir("Dir::Log"),
657 _config->Find("Dir::Log: :History"));
658 if (!history_name.empty())

659 {

660 FILE *history_out = fopen(history_name.c_str(),"a");
661 fprintf(history_out, "End-Date: %s\n", timestr);

662 fclose(history_out);

663 }

664

665 return true;

666 }

Pretty short. Good. However there are four fprintf() in there. How can we figure out the
one that is causing problem? From the backtrace we know the return address for that
fprintf() is 0x00007fab3216946d, let's see what we get at assembly level:

(gdb) disass 0x00007fab3216946d
Dump of assembler code for function _ZN9pkgDPkgPM8CloselLogEv:

0x00007tab32169300 <+0>: push %113

0x00007fab32169302 <+2>: push %r12

0x00007Tab32169304 <+4>: push %rbp

0x00007fab32169305 <+5>: mov %xdi,%rbp

0x00007fab32169308 <+8>: Xor %edi, %edi

0x00007fab3216930a <+10>: push %rbx

0x00007fab3216930b <+11>: sub $0x118,%rsp

0x00007fab32169312 <+18>: mov %fs:0x28,%rax

0x00007fab3216931b <+27>: mov %rax,0x108 (%rsp)

0x00007fab32169323 <+35>: X0r %eax , %eax

0x00007fab32169325 <+37>: callg 0x7fab320f8088 <time@plt>
0x00007fab3216932a <+42>: lea 0x30(%rsp) ,%rdi

0x00007fab3216932f <+47>: lea Ox40 (%rsp) ,%rbx

0x00007fab32169334 <+52>: mov %rax,0x30(%rsp)

0x00007fab32169339 <+57>: callqg 0x7fab320f7f28 <localtime@plt>
0x00007fab3216933e <+62>: lea @x1a90e (%rip) ,%rdx # O0x7fab32183c53
0x00007fab32169345 <+69>: mov %rbx,%rdi

0x00007fab32169348 <+72>: mov %rax,%rcx

0x00007fab3216934b <+75>: mov $0xc8,%esi

0x00007fab32169350 <+80>: callqg 0x7fab320f7f88 <strftime@plt>
0x00007fab32169355 <+85>: mov 0x430 (%rbp) ,%rdi

0x00007fab3216935¢c <+92>: test %rdi,%rdi

0x00007fab3216935f <+95>: je 0x7fab321693b7 <_ZN9pkgDPkgPM8CloselLogEv+183>
0x00007fab32169361 <+97>: lea 0x1a8f2(%rip),%rdx # Ox7fab32183c5a

0x000071ab32169368 <+104>: mov $0x1,%esi

0x00007fab3216936d <+109>: X0r %eax, %eax

0x00007fab3216936f <+111>: callg 0x7fab320f7408 <__fprintf_chkeplt>
0x00007tab32169374 <+116>: mov 0x430 (%rbp) ,%rdi

0x00007fab3216937b <+123>: lea 0x15065 (%rip) ,%rdx # Ox7fab3217e3e7
0x00007tab32169382 <+130>: mov %rbx,%rCx

0x000071ab32169385 <+133>: mov $0x1,%esi

0x00007fab3216938a <+138>: XoxY %eax ,%eax

0x00007fab3216938c <+140>: callg 0x7fab320f7408 <__ fprintf_chkeplt>
0x00007fab32169391 <+145>: mov 0x430 (%rbp) ,%rdi

0x00007fab32169398 <+152>: lea 0x1561e(%rip) ,%rdx # Ox7fab3217e9bd
0x00007fab3216939f <+159>: mov $0x1,%esi

0x00007fab321693a4 <+164>: Xor %eax ,%eax

0x00007fab321693a6 <+166>: callg 0x7fab320f7408 <__fprintf_chkeplt>
0x00007fab321693ab <+171>: mov 0x430 (%rbp) ,%rdi

0x00007fab321693b2 <+178>: callg 0x7fab320f7d18 <fclose@plt>
0x00007fab321693b7 <+183>: mov 0x23299a(%rip) ,%r13 # 0x7fab3239bd58
0x00007fab321693be <+190>: lea 0x181d6 (%rip) ,%rdx # 0x7fab3218159b
0x00007fab321693c5 <+197>: movq $0x0,0x430 (%rbp)

0x00007fab321693d0 <+208>: x0T %ecx,%ecx

0x00007fab321693d2 <+210>: mov %rsp,%rdi

0x00007fab321693d5 <+213>: lea 0x10@ (%xrsp) ,%rbp

0x00007fab321693da <+218>: mov Ox0 (%r13) ,%rsi

0x00007fab321693de <+222>: callg 0x7fab320fe3f@ <_ZNK13Configuration4FindEPKcS1_>
0x00007fab321693e3 <+227>: mov Ox0 (%r13) ,%rsi

0x00007fab321693e7 <+231>: lea 0x1817c(%rip),%rdx # 0x7fab3218156a
0x00007fab321693ee <+238>: X0r %ecx, %ecx

0x00007fab321693f0 <+240>: mov %rbp,%rdi

0x00007fab32169313 <+243>: callg ©x7fab320fee50 <_ZNK13Configuration7FindDirEPKcS1_>
0x00007fab321693f8 <+248>: lea 0x20(%rsp) ,%rl3

0x00007fab321693fd <+253>: mov %xsp,%rdx

0x00007fab32169400 <+256>: mov %Ibp,%rsi

0x00007tab32169403 <+259>: mov %r13,%rdi

0x00007fab32169406 <+262>: callg ©x7fab3210d530 <_z9flCombineSsSs>
0x00007fab3216940b <+267>: mov 0x10(%rsp) ,%rdi

0x00007tab32169410 <+272>: mov 0x232b@9 (%rip) ,%rbp # 0x7fab3239bf20
0x00007fab32169417 <+279>: sub $0x18,%rdi

0x00007fab3216941b <+283>: cmp %rbp,%rdi

0x00007fab3216941e <+286>: jne 0x7fab32169504 <_ZN9pkgDPkgPM8CloselLogEv+516>
0x00007tab32169424 <+292>: mov (%rsp) ,%rdi

0x00007fab32169428 <+296>: sub $0x18,%rdi

0x00007fab3216942c <+300>: cmp %rdi,%rbp

0x00007fab3216942f <+303>: jne 0x7fab321694d7 <_ZN9pkgDPkgPM8CloselLogEv+471>
0x00007fab32169435 <+309>: mov 0x20(%rsp) ,%rdi

0x00007fab3216943a <+314>: cmpq $0x0, -0x18(%rdi)

0x00007fab3216943f <+319>: lea -0x18 (%rdi) ,%rax

0x00007tab32169443 <+323>: je 0x7fab3216947e <_ZN9pkgDPkgPM8CloselLogEv+382>
0x00007fab32169445 <+325>: lea 0x17a45 (%rip),%rsi # 0x7fab32180e91
0x00007fab3216944c <+332>: callg 0x7fab320f7588 <fopen@plt>

0x00007fab32169451 <+337>: lea 0x1a80@e (%rip) ,%rdx # Ox7fab32183c66

0x00007fab32169458 <+344>: mov %rax,%rl2
0x00007fab3216945b <+347>: mov %rax,%rdi
0x00007fab3216945e <+350>: mov %TbX , %Y CX
0x00007tab32169461 <+353>: mov $0x1,%esi
0x00007fab32169466 <+358>: x0T %eax ,%eax
0x00007fab32169468 <+360>: callg 0x7fab320f7408 <__fprintf_chkeplt>
0x00007fab3216946d <+365>: mov %rl2,%rdi <= address at which the faulty call to fprintf() would have returned
0x00007fab32169470 <+368>: callg 0x7fab320f7d18 <fclose@plt>
[...]

This is what pkgDPkgPM: : CloseLog() looks like in assembly. As an aside, notice how it is
renamed _ZN9pkgDPkgPM8CloseLogEv () after compilation. This is due to name decoration
(or mangling really).

A quick inspection of the assembly dump shows the four calls to fprintf() at
0x00007fab3216936f, 0x00007fab3216938c, 0x00007fab321693a6 and
0x00007fab32169468. Since the return address for the faulty fprintf() is
0x00007fab3216946d which is right after that fourth call, the problem is with the
fprintf() at 0x00007fab32169468. This doesn't necessarily mean it's the last fprintf()
in the C as code may be rearranged and inlined by the compiler. Still, seeing how the first
three are grouped and the fourth one is all by itself immediately between a fopen() and a
fclose(), this looks a lot like line 661 in the C:

660 FILE *history_out = fopen(history_name.c_str(),"a");
661 fprintf(history_out, "End-Date: %s\n", timestr);
662 fclose(history_out);

Indeed, if fopen() fails and returns NULL, we are going to pass that NULL pointer to
fprintf() for its first argument. That would certainly explain a segmentation fault with
such a backtrace.

So, what did fopen() try to open? This information is somewhere in history_name and
returned by its c_str() method. While we could figure out where that object resides in
memory by looking at the assembly then find the offset at which we'll find the pointer to
the string containing the name of the file we are interested in, this is far more work than I
am willing to do at this point (and if it goes down to that I would rather just rebuild apt
with the debug symbols).

Switching to strace

Let's just strace the failure, only looking at the open() system call since that's the only
thing we are interested in:

strace -e open -f aptitude install aptitude-dbg

[...]

[pid 6079] open("/var/log/apt/history.log", O_WRONLY|O_CREAT|O_APPEND, ©666) = -1 ENOENT (No such file or directory)
[pid 6079] --- SIGSEGV (Segmentation fault) @ @ (0) ---

[pid 6081] +++ killed by SIGSEGV (core dumped) +++

Strace is just a way to observe all the system calls the process is performing. The point is
that it also retrieves the arguments of the system calls and that's what we are interested in.

Look how it segfaulted immediately after failing to open /var/log/apt/history.log. It
failed with ENOENT (No such file or directory). This may seem strange as O_CREAT
was specified. This means the file should have been created if it doesn't exist. However that
will still fail if one of the directories leading to the file doesn't exist (refer to the manual
pages for open(2) for the details). Let's see:

1s -d /var /var/log /var/log/apt /var/log/apt/history.log

1s: cannot access /var/log/apt: No such file or directory

1s: cannot access /var/log/apt/history.log: No such file or directory
/var /var/log

Yep, we are missing /var/log/apt/. Let's create it and see if it fixes the problem:

mkdir /var/log/apt

aptitude install aptitude-dbg

Reading package lists... Done

Building dependency tree

Reading state information... Done

Reading extended state information

Initializing package states... Done

No packages will be installed, upgraded, or removed.

@ packages upgraded, @ newly installed, @ to remove and 17 not upgraded.
Need to get @B of archives. After unpacking @B will be used.
Writing extended state information... Done

Reading package lists... Done

Building dependency tree

Reading state information... Done

Reading extended state information

Initializing package states... Done

Indeed, no more segmentation fault.

At this point you may be wondering why we didn't start with strace in the first place. The
problem is that a simple strace yields a lot of output and if you don't know what you are
looking for, finding the information in the noise may not be easy. Segmentation faults may
have many different causes. For some of them strace won't tell us anything useful at all. By
the time we switched to strace we had a good idea what we were looking for (the path of
the file that fails to open()).

The bug

Still, aptitude/apt should not segfault because it's missing a directory. It should display a
nice, informative error message and possibly exit gracefully but a segmentation fault is not
the right way to do this. Now, googling around we find this is addressed by Ubuntu bug
535509 which is fixed in apt 0.7.25.3ubuntu9.1. The way it was fixed looks like this:

--- apt-0.7.25.3ubuntu7/apt-pkg/deb/dpkgpm.cc 2010-04-14 19:30:06.000000000 +0100
+++ apt-0.7.25.3ubuntu9.3/apt-pkg/deb/dpkgpm.cc 2010-09-09 18:31:30.000000000 +0100
@@ -650,12 +650,17 @@ bool pkgDPkgPM::Closelog()
fprintf(term_out, "%s", timestr);
fprintf(term_out, "\n");
fclose(term_out);
}
term_out = NULL;

// check if the directory exists in which we want to write the file
string const logdir = _config->FindDir("Dir::Log");
if(not FileExists(logdir))

return _error->Error(_("Directory '%s' missing"), logdir.c_str());

+ + 4+ + o+

string history_name = flCombine(_config->FindDir("Dir::Log"),
_config->Find("Dir::Log: :History"));
if (!history_name.empty())
{
FILE *history_out = fopen(history_name.c_str(),"a");
fprintf(history_out, "End-Date: %s\n", timestr);

We simply check for the directory existence before attempting to open it. Notice we may
still encounter the same problem if the directory disappears between the check and the
attempt to open but I guess the maintainer finds it acceptable to crash in such an unlikely
case.

Updated Mon, 07 Mar 2011 08:25:42
As noticed by wildcat, it will still segfault if the directory exists but is not writable (chmod

a-rwx for example). A better fix has been implemented later. The current code looks like
this:

714 bool pkgDPkgPM: :Closelog()

715 {

716 char timestr[200];

717 time_t t = time(NULL);

718 struct tm *tmp = localtime(&t);

719 strftime(timestr, sizeof(timestr), "%F %T", tmp);

720

721 if(term_out)

722 {

723 fprintf(term_out, "Log ended: ");

724 fprintf(term_out, "%s", timestr);

725 fprintf(term_out, "\n");

726 fclose(term_out);

727 }

728 term_out = NULL;

729

730 if(history_out)

731 {

747 if (dpkg_error.empty() == false)

748 fprintf(history_out, "Error: %s\n", dpkg_error.c_str());
749 fprintf(history_out, "End-Date: %s\n", timestr);
750 fclose(history_out);

751 }

752 history_out = NULL;

753

754 return true;

755 }

The opening of the file is handled "somewhere else" and we just never try to use the file
descriptor if it's NULL.

The real WTF

As for the reason why /var/log/apt was missing on that system, it was due to an
operational mistake in attempting to free space on that filesystem. Additionally there is still
a problem in the way the system is managed as the 6 months old fix was not applied but
that goes out of the scope of this article.

Back to all articles.

https://web.archive.org/web/20250418084930/http://en.wikipedia.org/wiki/Name_mangling
https://web.archive.org/web/20250418084930/http://en.wikipedia.org/wiki/Name_mangling
https://web.archive.org/web/20250418084930/https://bugs.launchpad.net/ubuntu/+source/apt/+bug/535509
https://web.archive.org/web/20250418084930/https://bugs.launchpad.net/ubuntu/+source/apt/+bug/535509
https://web.archive.org/web/20250418084930/http://bazaar.launchpad.net/~ubuntu-core-dev/apt/ubuntu/revision/1771
https://web.archive.org/web/20250418084930/http://wildcat.espix.org/
https://web.archive.org/web/20250418084930/http://bazaar.launchpad.net/~ubuntu-core-dev/apt/ubuntu/view/head:/apt-pkg/deb/dpkgpm.cc#L719
https://web.archive.org/web/20250418084930/http://bl0rg.krunch.be/

