

Free Flyers Union

GROUPS POLLS BALLAST DEBATE NEWS ABOUT US

CCC 2026 Update

Check it here!

Current situation:

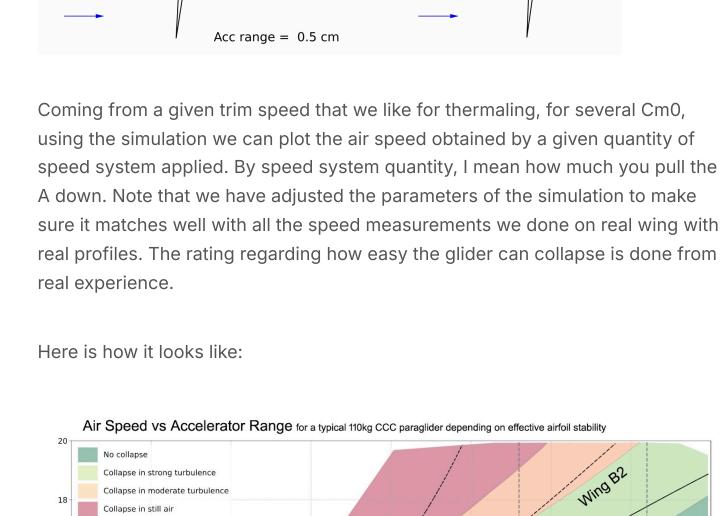
Home

Ballast Vote will close 1st December. CLICK HERE TO VOTE!

This explanation about CCC is linked to Luc Armant report "what do we want?"

In order to design a competitive wing with current scoring system and current CCC rules, it is necessary to use a profile with marginal pitch stability, which

During 5 years of working hard for the Enzo4 project, we have done plenty of measurements and simulation. For a wing of around 7 to 8 in Aspect Ratio, we found out that the velocity you get out of a given speed range is mostly


dependent upon the Cm0 of your profile. This number qualifies the pitch stability,

bigger values = more stable profile. Also bigger number = force resultant more in

the front of the profile which makes the A more loaded and the B less loaded.

translates into low resistance to collapse at full speed.

Here is an animation of a simulation done including line bending from air drag and line elasticity. Stable: $C_{m0} = 0.02$ Instable: $C_{m0} = -0.02$

Collapse in moderate turbulence

Collapse in still air

points difference.

18

16

Velocity [m/s]

range (CC CM Cm Curves based on simulation including line elasticity and line bending, corrected to match real life measurements. Cm0 is based on effective airfoil in flight. 4 00 20.0 12.5 15.0 17.5 10.0 Acc range [cm] Wing A: Wing with too much camber, can't be pushed to 14cm.
Wing B: Enzo3 M brand new. Optimized for 14cm CCC rule. Can be slightly more camber if the plastic rods get more tensionned. About 63 km/h BUT marginal stability at speed. Wing C: Enzo3 M but with 5mm shorter plastic rods. Optimum Cm0 for a 18cm acc range rule and safer than Wing B to fly XC in strong Alpine Conditions. Wing D: Delta5 or Photon. Starts to saturate in speed at about 20cm accelerator range. Wind E: Wing with high reflex profile, starting to saturate in speed at about 15cm accelerator range. INSPIRED | DRIVEN

The CCC rules says that you can only pull 14cm of speed system. It's limited by a

strap anyway. You can make a stable CCC but it will be slower. From the way that

competition are actually scored it is very important for your wing to have a very

good maximum speed within your 14cm. This because task are often finished

with a glide to goal with excess altitude, so the only thing that matters is how

many airspeed you can get. You can gain from 10 to 15 points for each minute in

front of another pilot, in competitions where the final result will be driven by few

Note that the difference in air speed can be massive from very little difference in

the profile. For example, an Enzo3 with good plastic tension coming from the

rods are loose (5mm cut off). See in the graph below. The pilots and the

bar or trimming their plastics to be safer but not as fast.

factory will go at 61 km/h (IAS) while it will only go at 55 km/h when the plastic

designers are pushed to use unstable wing profile. Enzo3 pilots are constantly

facing a difficult dilemma of having long plastic, faster wing but collapsing on the

WingC

Wing D

Wing E

CCC update: Now if you limit the speed system to 18 cm instead of 14 cm but you keep the same scoring, very probably, the winning wing will be something more stable than current CCC (for the same speed) but still dangerously fast and at the limit of stability at full speed. That would be wing B2 on the graph below, and that would certainly not be safe.

but also for the pilot.

can currently have with a CCC.

However, one could ask:

incentive for max speed on final glide?

When, very exceptionally, we would have a McCready of +6m/s, is suddenly the

The answer is based on the fact that the event is too rare to influence the design

and on the fact that the Effective XC speed vs Horizontal speed curve is very flat

around the McCready speed. See orange curve in the graph below:

better design becoming Wing B2 again, despite the fact that there is no more

However, if there is no more incentive for high speed in final glide, the only

important design factor is to reach the most frequent McCready speed during the

task while keeping the wing open. Glider solidity will become key for the designer

Up to about 4m/s of average thermal climb, which is what we get 99% of the

time in competition, the McCready speed remains below the maximum speed we

The best pilot will fly to the next big thermal at McCready speed. It's a 6m/s

average thermal. Extremely rare during a task, even in strong alpine conditions,

but sometimes happening. The MacCready for that thermal is 71 km/h (19.9m/s).

enough. However, that wing will probably still be slower than Wing C in active air,

collapse. But let's imagine that the pilot on wing B2 is extremely imprudent and

manages once to overpass Wing C. If he does so at 19.9m/s and if the Wing C is

only at 17.0m/s (current E3 top speed), and all that during a transition of 5 km,

wing B2 will gain only 9 seconds over Wing C. Something that he will certainly

I think you can understand that the manufacturer will not go in the direction of

there is no real gain in this hypothesis and finally because in reality, in most

If it was a final glide with classic ESS, during a 5km glide, wing B2 at 19.9 m/s

would gain 43 seconds. And this gain would be guaranteed as there is no much

risk to not center correctly the thermal in the first round. About 10 points in the

box for Wing B2. That could force a manufacturer toward an unsafe design

I suppose you understand why the gain flying full speed toward the extreme

thermal was only 9 s (most probably lost in the first round) while racing full

speed toward ESS, the gain is a massive 43 s guaranteed. When flying toward

the thermal, you are faster but you still arrive lower, so your average XC speed

a 6 m/s thermal you'd be making the same race as gliding toward a 1:2 CESS

optimum makes only a very small handicap. See again the curves of the graph

slope. For the same reason, flying toward CESS with a slower speed than

(including the thermal) is not that much different. For picturising it, gliding toward

Wing B2 design. First because the hypothesis is extremely rare, second because

situations during a task, Wing B2 will lose or because of collapses or because of

lose immediately at the tiniest mistake while entering the thermal first.

It might be possible to reach such speed with wing B2 if the turbulence is low

just because the pilot on Wing C does not have to control as much to not

poorer speed (required to keep the glider opened). So a manufacturer will always prefer to design wing C as it will win competition AND it will have less accidents from collapse during the task.

choice.

above.

Example:

Other questions: But in current task, how do you explain that we often fly full speed while the McCready speed seems to be lower? We sometimes think that we are flying full speed during glides while we are not really. Having some hand weight on the B handles helps for stability but removes about 5km/h, so we are "only" at 56km/h. That's what we most do in "classic" XC conditions, and that's corresponding to McCready of +2.7m/s average thermal. But effectively, we also often fly faster than McCready. And it's a mistake we

can't easily have feedback about, also because the difference it makes in XC

average speed is super small. Numerical example, still on a 5 km glide: if the

McCready climb is +2.7 m/s, the optimum McCready speed is 56 km/h. Now if

you fly at 61km/h instead (like you'd do on final glide, no pressure on B handle),

you'll arrive in the thermal zone 27 seconds sooner (but lower) and you'll be

theoretically handicapped by McCready theory by only 5 seconds (a third of a

of good climbers, you may beat the second slower group due a good search

move and you could be biased to think that you did so thanks to your higher

In many situations, the slower second group was slightly behind anyway, so

you'll not receive the feedback for the 5 seconds penalty of overpassing the

Note that all speeds are expressed in IAS. So for example if you are at 1000m

I agree we can't rely only on theory about this sort of thing. But the reality is also

make it less efficient to glide alone at optimum speed.

altitude, you can add almost 4% to these values.

McCready speed.

gliding speed, while it was just thanks to a better climbing team work. In other

worlds, when everyone is flying too fast, the climbing team work can sometimes

circle in a thermal). If you are inside the leading gaggle, which is mostly made out

telling the same thing. The reality of what we observe when doing XC amongst friends. But also the reality during competition. It often happens that there is someone with a faster glider than the others. Sometimes it has been the model which was way faster than the others; remember. In these cases, the difference was never really made during the task, it was gained during the final glide to ESS. Final sprint award removal. You can understand from the graph below that there is a strong discontinuiting

while racing when it comes to final glide. Before the final glide, we are racing XC

based on thermal and transition. It's not about who's flying the fastest through the

air, it's about who's flying averagely the fastest including thermaling, finding lines,

strategy, etc. But when it comes to final glide with excess altitude (which is very

often), it becomes trivial. Horizontal speed equals Effective Speed.

Conical End of Speed Section.

We use a selection of our own and third-party cookies on the pages of this website: Essential cookies, which are required in order to use the website; functional cookies, which provide better easy of use when using the website; performance cookies, which we use to generate aggregated data on website use and statistics; and marketing cookies, which are used to display relevant content and advertising. If you choose "ACCEPT ALL", you consent to the use of all cookies. You can accept and reject individual cookie types and revoke your consent for the future at any time at "Settings".

Privacy policy Cookie documentation

COOKIE SETTINGS **DENY ALL ACCEPT ALL**

Removing the final sprint award can be made in several ways. For those who don't know about CESS, we made a shitty video in the past which can still barely be watched here, but it's self explanatory: https://www.youtube.com/watch?v=OBx-QYkj3Bg

receive 3s bonus, which is 3s less Removing or limiting time points points.	while maximizing leading points and distance
To be discussed. I hope the graph below summariz	es the idea well.
	, pilots and manufacturers are pushed to fly
In a possible new ecosystem of rureward), the best CCC wing will a	ules (bigger limiter but no more final sprint lso be the more stable wing.
Community	Kicker Start
WhatsApp Guidelines Workflow Volunteer	Kick start meeting What do we want What went wrong
Lobby list	What went wrong
Legal	Scan and Join the Whats Ann
Privacy policy Contact	Scan and Join the WhatsApp Working Community

Privacy policy Cookie documentation

Honorin is one of them and I believe he's the most talented in the world in finding

the fastest and lowest way to goal. These guys wish to keep the benefits unless