
The OOM killer may be called even when there is still plenty of memory
available
Adrien Kunysz, Tue, 01 Mar 2011 03:48:02

Many people are confused by memory management on Linux. This is not very surprising
considering it is pretty counter intuitive in many ways. A specific element that seems to
cause much head scratching is the Out Of Memory killer. The general idea is that Linux
overcommits memory in such a way that applications may end up attempting to use more
memory than is actually available. If this becomes too much of a problem, the OOM killer
will kick in and try to find a memory-hogging process and kill it in an attempt to get the
system back to a mangeable state. However there are other cases when the OOM killer may
be called and this article describes such a case.

This all began when a user (let's call him yodaz) complained on some forum that his
system running 2.6.12.6-arm1 was subject to OOM messages. Yodaz further noticed there
was still plenty of swap available to the system and he was obviously confused as to why
the OOM was being triggered in his case. He had the good idea of pasting a lot of log
messages, most of them being irrelevant but he still managed to include the actual OOM
message:

oom-killer: gfp_mask=0x2d0
DMA per-cpu:
cpu 0 hot: low 2, high 6, batch 1
cpu 0 cold: low 0, high 2, batch 1
Normal per-cpu: empty
HighMem per-cpu: empty

Free pages: 6524kB (0kB HighMem)
Active:20 inactive:23 dirty:0 writeback:0 unstable:0 free:1631 slab:874 mapped:20 pagetables:90
DMA free:6524kB min:1200kB low:1500kB high:1800kB active:80kB inactive:92kB present:16384kB pages_scanned:41 all_unreclaimable? no
lowmem_reserve[]: 0 0 0
Normal free:0kB min:0kB low:0kB high:0kB active:0kB inactive:0kB present:0kB pages_scanned:0 all_unreclaimable? no
lowmem_reserve[]: 0 0 0
HighMem free:0kB min:128kB low:160kB high:192kB active:0kB inactive:0kB present:0kB pages_scanned:0 all_unreclaimable? no
lowmem_reserve[]: 0 0 0
DMA: 411*4kB 252*8kB 113*16kB 27*32kB 1*64kB 1*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 0*4096kB = 6524kB
Normal: empty
HighMem: empty
Swap cache: add 24282, delete 24269, find 7705/11790, race 0+0
Free swap = 124768kB
Total swap = 128448kB
Out of Memory: Killed process 453 (smbd).

As we can see, the memory is split into three zones: DMA, Normal and HighMem. Close
observation shows the Normal and HighMem zones are actually completely empty. The
system is only using the DMA zone. It's the first time I see this but then it's the first time I
see an OOM message from an ARM. Anyway, this bit:

DMA free:6524kB min:1200kB low:1500kB

Clearly shows there is still over 6 MB of memory which is way above both the low mark
value of 1500 kB and the minimum (1200 kB) the system will accept before taking drastic
action (calling the OOM killer). A while ago, Dominic Duval wrote a short webpage with a
nice graphic explaining what these limits are for. That page is better than any explanation I
could give about this.

So, there is still memory available. How come the OOM killer is triggered? Another
common cause is memory fragmentation. In some case you may have plenty of memory
available but it is split in many small blocks. Hence, if something attempts to allocate a
relatively large chunk of contiguous memory, it may still fail and when memory allocation
fails, you may end up calling the OOM killer. Now, we actually have information about
how fragmented the memory is in the dump that was provided:

DMA: 411*4kB 252*8kB 113*16kB 27*32kB 1*64kB 1*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 0*4096kB = 6524kB

See? There is 6525 kB of free memory split in 411 chunks of 4 kB, 252 of 8 kB and so on.
Notice how the largest available chunk is 128 kB. The memory fragmentation hypothesis
seems to match but we still have no idea what is actually attempting to allocate memory
and triggering the OOM. At this stage there are various ways to instrument the kernel to
obtain a backtrace that would give us some indications as to where that failed allocation
comes from but maybe there are other messages before the OOM that could give us a clue?

After sharing my observation with yodaz, he did notice some interesting messages before
the OOM:

XFS: possible memory allocation deadlock in kmem_alloc (mode:0x2d0)

Notice how the mode value is the same than the gfp_mask in the OOM message. Some
digging inside the kernel source tells us where this message comes from:

47void *
48kmem_alloc(size_t size, int flags)
49{
50 int retries = 0;
51 int lflags = kmem_flags_convert(flags);
52 void *ptr;
53
54 do {
55 if (size < MAX_SLAB_SIZE || retries > MAX_VMALLOCS)
56 ptr = kmalloc(size, lflags);
57 else
58 ptr = __vmalloc(size, lflags, PAGE_KERNEL);
59 if (ptr || (flags & (KM_MAYFAIL|KM_NOSLEEP)))
60 return ptr;
61 if (!(++retries % 100))
62 printk(KERN_ERR "XFS: possible memory allocation "
63 "deadlock in %s (mode:0x%x)\n",
64 __FUNCTION__, lflags);
65 blk_congestion_wait(WRITE, HZ/50);
66 } while (1);
67}

This doesn't look very nice. What this means is that when XFS tries to allocate chunks of
more than MAX_SLAB_SIZE bytes, it first tries to get contiguous memory then if it failed
MAX_VMALLOCS times it will fall back to non contiguous memory. So, this means nothing is
actually failing: XFS will still gets the memory it needs but meanwhile, it will have caused
the OOM killer to be triggered and an (arguably) innocent Samba daemon will have been
forcibly terminated.

Now, how do we fix that? Well, 2.6.12.6 is pretty old so upgrading is probably a good idea
as recent kernels have many improvements in memory management (thus reducing risks of
high fragmentation) and in the XFS driver (potentially reducing the need for large chunks
needing to be allocated at inopportune time). It is also possible that some careful tuning of
the XFS driver may avoid the problematic situation as is some serious memory profiling of
the system.

Another more obvious fix is to change kmem_alloc() and its callers as to attempt to
allocate contiguous memory only when strictly necessary. This is what commit
bdfb04301fa5 does. After that patch, the function looks like this:

47void *
48kmem_alloc(size_t size, unsigned int __nocast flags)
49{
50 int retries = 0;
51 gfp_t lflags = kmem_flags_convert(flags);
52 void *ptr;
53
54 do {
55 ptr = kmalloc(size, lflags);
56 if (ptr || (flags & (KM_MAYFAIL|KM_NOSLEEP)))
57 return ptr;
58 if (!(++retries % 100))
59 printk(KERN_ERR "XFS: possible memory allocation "
60 "deadlock in %s (mode:0x%x)\n",
61 __func__, lflags);
62 congestion_wait(BLK_RW_ASYNC, HZ/50);
63 } while (1);
64}

We are still looping forever to get our chunk of memory but we are not trying __vmalloc()
first then changing our mind if it fails. This means we are less likely to trigger an OOM
when the memory is highly fragmented and our smbd daemon will not die (well, not for the
same reason at least).

As far as I know, after a fsck^Wxfs_repair that obviously didn't help at all, yodaz is now
trying to rebuild a newer version of his XFS module.

Back to all articles.

https://web.archive.org/web/20250117043027/https://linuxfr.org/forums/linuxnoyau/posts/probl%C3%A8me-doom-killer-sur-un-nas-lacie
https://web.archive.org/web/20250117043027/http://web.archive.org/web/20080419012851/http://people.redhat.com/dduval/kernel/min_free_kbytes.html
https://web.archive.org/web/20250117043027/http://web.archive.org/web/20080419012851/http://people.redhat.com/dduval/kernel/min_free_kbytes.html
https://web.archive.org/web/20250117043027/http://lxr.linux.no/#linux+v2.6.12/fs/xfs/linux-2.6/kmem.c#L47
https://web.archive.org/web/20250117043027/http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=commitdiff;h=bdfb04301fa5fdd95f219539a9a5b9663b1e5fc2
https://web.archive.org/web/20250117043027/http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=commitdiff;h=bdfb04301fa5fdd95f219539a9a5b9663b1e5fc2
https://web.archive.org/web/20250117043027/http://bl0rg.krunch.be/

