
Piet++
This is a work in progress, and is still in development.

Piet++ is a variant of Piet, enabling access to multiple stacks within the main stack. The goal of Piet++ is to provide a means to limit side
effects from manipulating the stack while staying true to the feel and philosophy behind Piet. Piet++ provides a rich set of operators to
manipulate the new stack type available, as well as expanding the set of operators available and providing a way to read and write to the
bitmap that represents the program.

Contents [hide]

1 Language Concepts
1.1 The Colors
1.2 The Stacks

2 Commands

Language Concepts
Piet++ aims to remain true to the concept of Piet, and maintains the core concepts of Piet. Piet code takes the form of graphics made up
of the recognized colors. Codel refers to a block of color equivalent to a single pixel. Color blocks are regions of equal colored codels
connected in four directions. Program execution begins in the top left of the program, and the program maintains a direction pointer,
initialized pointing right and able to point left, right, up, and down, and a codel chooser, initialized left and able to point left and right. As
the program is executed, the interpreter traverses the color blocks of the program, according to the same rules as Piet:

1. The interpreter finds the edge of the current color block which is furthest in the direction of the DP. (This edge may be disjoint if the
block is of a complex shape.)

2. The interpreter finds the codel of the current color block on that edge which is furthest to the CC's direction of the DP's direction of
travel. (Visualize this as standing on the program and walking in the direction of the DP; see table at right.)

3. The interpreter travels from that codel into the color block containing the codel immediately in the direction of the DP.

The Colors

Piet++ uses the 6 bit color space. Command execution is controlled by the delta between the red, blue, and green channels between
codels. The most significant bit of the green channel is ignored unless the color is #333/#FFFFFF (white) or #000/#000000 (black), which
have the same behaviors as in Piet.

#000/#000000 #001/#000055 #002/#0000AA #003/#0000FF #010/#005500 #011/#005555 #012/#0055AA #013/#0055FF

#100/#550000 #101/#550055 #102/#5500AA #103/#5500FF #110/#555500 #111/#555555 #112/#5555AA #113/#5555FF

#200/#AA0000 #201/#AA0055 #202/#AA00AA #203/#AA00FF #210/#AA5500 #211/#AA5555 #212/#AA55AA #213/#AA55FF

#300/#FF0000 #301/#FF0055 #302/#FF00AA #303/#FF00FF #310/#FF5500 #311/#FF5555 #312/#FF55AA #313/#FF55FF

#020/#00AA00 #021/#00AA55 #022/#00AAAA #023/#00AAFF #030/#00FF00 #031/#00FF55 #032/#00FFAA #033/#00FFFF

#120/#55AA00 #121/#55AA55 #122/#55AAAA #123/#55AAFF #130/#55FF00 #131/#55FF55 #132/#55FFAA #133/#55FFFF

#220/#AAAA00 #221/#AAAA55 #222/#AAAAAA #223/#AAAAFF #230/#AAFF00 #231/#AAFF55 #232/#AAFFAA #233/#AAFFFF

#320/#FFAA00 #321/#FFAA55 #322/#FFAAAA #323/#FFAAFF #330/#FFFF00 #331/#FFFF55 #332/#FFFFAA #333/#FFFFFF

The Stacks

Piet++ is initialized with the Stack Pointer pointing towards an empty stack. Stacks and integers may be pushed onto the stack, and
through commands the stack pointer can point to other stacks within the program. Except for the top stack, all stacks are identical, having
a number of elements and a parent stack. There will always be one and only one way to access a stack that has been created.
Commands which refer to or require a stack above the current stack will fail on the top stack, and the command will be ignored and
execution will resume at the next instruction.

Commands
Piet++ provides a rich set of 31 commands with which to manipulate data on the stacks and manipulate the stacks themselves. When a
commands behavior is undefined, it is recommended to ignore it and continue with execution.

Create account Log in

Page Discussion Read View source View history Search Esolang

Main page
Community portal
Language list
Browse by category
Recent changes
Random page
Help

Tools

What links here
Related changes
Special pages
Printable version
Permanent link
Page information

https://esolangs.org/wiki/Piet
https://esolangs.org/wiki/Piet
https://esolangs.org/wiki/Piet
https://esolangs.org/wiki/Piet
https://esolangs.org/wiki/Piet
https://esolangs.org/wiki/Piet
https://esolangs.org/w/index.php?title=Special:CreateAccount&returnto=Piet%2B%2B
https://esolangs.org/w/index.php?title=Special:UserLogin&returnto=Piet%2B%2B
https://esolangs.org/wiki/Piet%2B%2B
https://esolangs.org/w/index.php?title=Talk:Piet%2B%2B&action=edit&redlink=1
https://esolangs.org/wiki/Piet%2B%2B
https://esolangs.org/w/index.php?title=Piet%2B%2B&action=edit
https://esolangs.org/w/index.php?title=Piet%2B%2B&action=history
https://esolangs.org/wiki/Main_Page
https://esolangs.org/wiki/Main_Page
https://esolangs.org/wiki/Esolang:Community_portal
https://esolangs.org/wiki/Language_list
https://esolangs.org/wiki/Esolang:Categorization
https://esolangs.org/wiki/Special:RecentChanges
https://esolangs.org/wiki/Special:Random
https://esolangs.org/wiki/Esolang:Help
https://esolangs.org/wiki/Special:WhatLinksHere/Piet%2B%2B
https://esolangs.org/wiki/Special:RecentChangesLinked/Piet%2B%2B
https://esolangs.org/wiki/Special:SpecialPages
javascript:print();
https://esolangs.org/w/index.php?title=Piet%2B%2B&oldid=117409
https://esolangs.org/w/index.php?title=Piet%2B%2B&action=info

Commands are defined by the transition of color from one color block to the next as the interpreter travels through the program.
Commands are picked based on the difference between the first and second color modulo four in the red and blue channels and modulo
two in the green channel, unless the color is black or white, when the transition is ignored and special behavior is executed.

Delta Green 0 Delta Red

Delta Blue DR 0 DR 1 DR 2 DR 3

DB 0 Noop Push-Int Push-Stack Pop

DB 1 Dup Roll Roll-Context Push-up

DB 2 Push Down Pull Up Up Down

DB 3 Add Subtract Multiply Divide

Delta Green 1

DB 0 Mod Negate Not Greater

DB 1 Equal Lesser Size In Integer

DB 2 In Character Out Integer Out Character Depth

DB 3 Read Write Pointer Toggle

Push-int: Pushes an int equal to the size of the color block just exited onto the stack.

Push-stack: Pushes an empty stack onto the current stack.

Pop: Pops the top element off the stack and discards it.

Dup: Duplicates the top element of the stack, performing a deep copy if the element is a stack. In Piet++, there is always only way to
access any type of data, and multiple references to data are not allowed.

Roll: performs exactly the same as in Piet: Pops the top two values off the stack and "rolls" the remaining stack entries to a depth equal to
the second value popped, by a number of rolls equal to the first value popped. A single roll to depth n is defined as burying the top value
on the stack n deep and bringing all values above it up by 1 place. A negative number of rolls rolls in the opposite direction. A negative
depth is an error and the command is ignored. If a roll is greater than an implementation-dependent maximum stack depth, or one of the
operands is a stack, it is handled as an implementation-dependent error, though simply ignoring the command is recommended.

Roll-Context: A trinary operator, it requires the stack to have two integers on the top and a series of nested stacks whose top variable is a
stack, like so:

 x y S ...
 ╚ S ...
 ╚ S ...
 ╚ S ...
 ╚ S ...
 ╚ S ...
 ╚ ...

The stacks are then rolled in a manner similar to the roll command: the top stacks data is placed at a depth equal to the second value
and all other stack's data moved up one stack. This is repeated a number of times equal to the first number, with a negative number
rolling a stacks data from the bottom stack to the top of the stack heirarchy.

Examples:

Stack before rolc:

 1 2 S 1
 ╚ 2

After:

 S 2
 ╚ 1

Before:

 1 3 S 1234 5
 ╚ S 234 90 8
 ╚ 8900 342 6

https://esolangs.org/wiki/Piet

After :

 S 234 90 8
 ╚ S 8900 342 6
 ╚ 1234 5

Before:

 1 3 S 12 34 545 6
 ╚ S 342 67 S 123 8
 ║ ╚ 2 3 4 5
 ╚ S
 ╚ 8 90 69

After :

 S 342 67 S 123 8
 ║ ╚ 2 3 4 5
 ╚ S
 ╚ S 12 34 545 6
 ╚ 8 90 69

Before:

 1 3 S 1324 345 354 765 657
 ╚ S 132 657 68
 ╚ 2 S 34 234 5
 ╚ 342 645 324

After:

 // The stack remains unchanged, as the stack hierarchy did not have sufficient depth to accommodat
 1 3 S 1324 345 354 765 657
 ╚ S 132 657 68
 ╚ 2 S 34 234 5
 ╚ 342 645 324

Push up: Pops the top element of the current stack and pushes it onto the the stack above it.

Push down: If a stack is the second item on the current stack, it pops the top item off the current stack and pushes it onto the stack now
at the top of the stack.

Pull up: If there is a stack at the top of the current stack, it pops the top value off that stack and pushes it onto the current stack.

Up: Moves the Stack Pointer one level in the stack hierarchy up.

Down: If the top item in the current stack is a stack, moves the Stack Pointer into that stack.

Add: Pops the top two elements of the stack. If both are integers, they are added together and pushed onto the stack. If one is an integer
and one is a stack, the integer is pushed onto the stack or pushed onto the bottom, depending on if the integer is above or below the
stack. If both are stacks, the bottom one is appended to the top one.

Subtract: If the top two items on the stack are integers, it pops the top two items from the stack and pushes the result of subtracting the
top one from the second onto the stack.

Multiply: If the top two items on the stack are integers, it pops the top two items from the stack and pushes the result of their multiplication
to the stack.

Divide: If the top two items on the stack are integers, it pops the top two items from the stack and pushes the result of the integer division
of the second item by the top item onto the stack.

Mod: If the top two items on the stack are integers, it pops the top two items from the stack and pushes the result of modding the second
item by the top item onto the stack

Negate: If the top item on the stack is an integer, it pops an integer x from the stack, and pushes -x onto the stack

Not: If the top item on the stack is an integer, it pops an integer from the stack and pushes 0 if the number is not equal to 0 and 1 if it is
equal to zero.

Greater: If the top two items on the stack are integers, it pops the top two items from the stack and pushes 1 on to the stack if the second
value is greater than the top value, and pushes 0 if it is not greater.

About Esolang Disclaimers

This page was last edited on 4 October 2023, at 05:27.

Content is available under CC0 public domain dedication.

Equal: If the top two items on the stack are integers, it pops the top two items from the stack and pushes 1 on to the stack if they are
equal, and pushes 0 they are not equal.

Lesser: If the top two items on the stack are integers, it pops the top two items from the stack and pushes 1 on to the stack if the second
value is lesser than the top value, and pushes 0 if it is not lesser.

Size: Pushes the size of the top item onto the stack. The size of a stack is the number of elements inside it, and the size of an integer is
-1.

In: Reads a value from STDIN as either a number or character, depending on the particular incarnation of this command and pushes it on
to the stack. If no input is waiting on STDIN, this is an error and the command is ignored. If an integer read does not receive an integer
value, this is an error and the command is ignored.

Out: Pops the top value off the stack and prints it to STDOUT as either a number or character, depending on the particular incarnation of
this command. If the top item on the stack is a stack, the stack is popped off the stack and Out is called on it's elements.

Depth: Returns how deep in the stack hierarchy the pointer is.

Read: If the top two objects on the stack are integers, the top value is popped off the stack and is added to the pointers y position, and
the x value is added to the pointers x position. The RGB value of the codel at that location is pushed onto the stack. Whether the alpha
channel is considered is implementation and format dependent. IF the pointer would go off the program, that is an error and the
command is ignored. The top left codel is codel (0,0), and the bottom right codel has the values of the width and height of the program
minus one.

Write: If the top three objects on the stack are integers, the top value is popped off the stack and is added to the pointers y position, and
the x value is added to the pointers x position. The third value is popped of the stack, and the RGB value of the codel at the determined
location is set to that value. Whether the alpha channel is considered is implementation and format dependent.

Pointer: Pops the top value off the stack and rotates the DP that many times clockwise, counterclockwise if negative.

Toggle: Pops the top value off the stack and toggles the CC that many times.

Categories: Languages Non-textual Stack-based Turing complete Two-dimensional languages Self-modifying
Unimplemented

https://esolangs.org/wiki/Esolang:About
https://esolangs.org/wiki/Esolang:General_disclaimer
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
https://www.mediawiki.org/
https://www.mediawiki.org/
https://www.bytemark.co.uk/r/esolangs
https://www.bytemark.co.uk/r/esolangs
https://esolangs.org/wiki/Esolang:Copyrights
https://esolangs.org/wiki/Special:Categories
https://esolangs.org/wiki/Category:Languages
https://esolangs.org/wiki/Category:Non-textual
https://esolangs.org/wiki/Category:Stack-based
https://esolangs.org/wiki/Category:Turing_complete
https://esolangs.org/wiki/Category:Two-dimensional_languages
https://esolangs.org/wiki/Category:Self-modifying
https://esolangs.org/wiki/Category:Unimplemented

