
Proposer un contenu

Identifiant

Identifiant

Mot de passe

Mot de passe

 Connexion automatique

Se connecter

Pas de compte ? S’inscrire…

Dépêches | Journaux | Liens | Forums | Wiki | Rédaction Rechercher
S

e
 c

o
n

n
e

c
te

r

« It works on my satellite »
ou l'histoire d'un bug dans
l'espace
Posté par 2PetitsVerres (Mastodon) le 10 janvier 2026 à 10:59.
Édité par 6 personnes. Modéré par Benoît Sibaud. Licence
CC By‑SA.
Étiquettes : satellite, bug

Cette dépêche raconte un vieux bug que

j’ai eu sur un satellite. L’identification, la

reproduction, la correction. C’est le bug

qui m’a le plus intéressé/marqué dans ma

carrière (jusqu’ici), C’est pourquoi cela pourrait aussi

vous intéresser.

L’appel

Il y a bien longtemps, dans une galaxie lointaine. Ah

non, pardon. Un long weekend de 14 juillet, sur une

plage, je reçois un coup de fil : « Un des satellites a

rebooté, à cause d’une erreur logicielle, est-ce que tu

es disponible pour venir comprendre ce qu’il s’est

passé ? A priori, il fonctionne toujours, mais il est passé

tout seul sur le calculateur redondant. »

Quelques mois avant, on avait lancé une première

grappe de six satellites ; d’autres lancements sont pré‐

vus pour compléter une constellation dans les

mois/années à venir. Comme tout marche bien depuis

des mois, personne de l’équipe logiciel de bord n’est

d’astreinte. Sur ces satellites, j’étais surtout sur la par‐

tie validation. En gros, ce jour-là pour moi, ce n’était

pas possible, mais j’y suis allé le lendemain, un samedi

ou dimanche.

Sommaire

L’objectif et les moyens de débug

L’analyse

EDAC / Protection contre les SEU

L’hypothèse

Chez moi, ça marche

L’erreur

La reproduction

La correction (Over-The-Air, mais sans l’air)

Conclusion

L’objectif et les moyens de
débug

Si nos managers nous ont appelé, c’est parce quand un

satellite bugue en prod (on va dire en vol, plutôt), c’est

comme pour n’importe quel autre logiciel, des gens

veulent des réponses à des questions comme :

pourquoi ?

est-ce que c’est grave ?

est-ce que ça va se reproduire ?

comment on corrige ?

Par contre, les moyens sont potentiellement différents

de ce que vous avez dans d’autres environnements (ou

pas, j’imagine que ça dépend des gens) Ce qu’on a :

le code

la doc

des bancs de tests (avec le même matériel pour

le calculateur)

des gens

un tout petit peu de contexte logiciel sauvegardé

au moment de l’erreur (j’y reviens)

la télémétrie avant l’anomalie (tout allait bien)

la télémétrie après l’anomalie (tout va bien, mais

on est passé du mode matériel 2 au mode 3. En

gros c’est le même, sauf qu’on utilise certains

équipements “redondants” au lieu du “nominal”,

dont le calculateur)

Premier élément, qui a mené au fait que c’est nous (du

logiciel) qui avons été appelés, c’est que le matériel qui

gère le mode (2 -> 3) peut changer de mode pour plu‐

sieurs raisons, mais il sait pourquoi il le fait. Et la raison

c’est « le logiciel m’a dit de le faire ». Donc ça vient de

nous.

L’analyse

Comme tout va bien, on va regarder le contexte sauve‐

gardé. Ce n’est pas un core dump qu’on peut passer à

gdb , mais ça contient quelques infos :

le code de l’erreur ILLEGAL CPU
INSTRUCTION
le Program Counter %pc qui nous donne

l’adresse de l’instruction exécutée au moment de

l’erreur

l’adresse de la prochaine instruction à exécuter

%npc (ici c’est l’adresse juste après %pc , rien

de surprenant)

une copie des registres (bon, on ne va pas en

avoir besoin, donc je ne vous fais pas un cours

sur SPARC et ses registres tournant, de toute

façon j’ai oublié. On pourrait probablement les

utiliser pour récupérer partiellement la pile d’ap‐

pel, on l’a surement fait)

la date et l’heure (super info utile. Enfin, ça cor‐

respond à notre anomalie, j’imagine que c’est

pour ça qu’on l’avait)

surement d’autres choses, mais pas utiles pour la

suite.

Problème résolu donc ? on est à l’adresse %pc , on

l’exécute et le CPU nous dit que l’instruction n’est pas

légale. Qu’est-ce qu’il y a ici ? Une instruction légale,

quelle que soit la valeur des registres. Pareil pour un

peu plus haut et un peu plus bas, rien qui provoque

cette erreur. Que s’est-il passé ?

On est dans l’espace, donc l’explication facile (dès

qu’on n’explique pas un truc) : l’instruction a dû avoir

un Single Event Upset (SEU), un bit flip. Ça a trans‐

formé une instruction légale en instruction illégale.

C’est simple ? Sauf que non, on est dans l’espace, en

conséquence, on a tout un mécanisme de protection

contre les SEU. C’est pas infaillible (par exemple si on a

deux bits inversés, on ne peut pas corriger) mais ce

n’est pas la bonne signature. Si c’était ça, ça dirait

DOUBLE EDAC ERROR , pas ILLEGAL CPU
INSTRUCTION .

Donc la cause de l’anomalie n’est pas un SEU.

EDAC / Protection contre les SEU

Je suis sûr que vous êtes intéressé, donc je vais vous

décrire la protection contre les bit flips. C’est un mix

de matériel/logiciel (en plus d’avoir une boite autour

qui diminue la probabilité). En mémoire (RAM, ROM)

pour 4 octets de données “utiles”, on consomme 5

octets. Le 5ᵉ octet contient un code de contrôle calculé

à partir des 4 autres (EDAC W). Si un bit change (sur les

5 × 8 = 40 bits), on peut non seulement le détecter

mais aussi reconstruire la valeur correcte. Si deux bits

changent (ou plus, mais il y a une limite), on peut

détecter l’erreur mais pas la corriger (cf: le DOUBLE
EDAC ERROR mentionné plus haut)

C’est complètement transparent vu du logiciel (code

source, ou assembleur), tout ça est calculé par le maté‐

riel. Quand on écrit en mémoire 0x12345678 il cal‐

cule le code et écrit 0x12345678XY avec la bonne

valeur de X et Y. Quand on lit, pareil, le matériel com‐

mence par lire 0x12345678XY , calcule la somme de

contrôle sur les 4 octets, si c’est le bon, il nous donne

0x12345678 .

Là où ça se complique, c’est quand il y a un change‐

ment. Disons qu’on a maintenant 0x02345678XY . (1

--> 0). Il se passe deux choses ici :

1. le matériel dit au logiciel 0x12345678 (il cor‐

rige, mais uniquement la valeur envoyée au soft‐

ware. Pas la valeur enregistrée en mémoire)

2. il émet un signal SINGLE EDAC ERROR .

C’est là que le logiciel intervient, dans le point 2. Ce

signal est lié à une trap qui corrige la mémoire. Sché‐

matiquement c’est lié à une fonction qui ressemble à

ceci (en assembleur SPARC en vrai, mais j’ai tout

oublié)

; adresse vient du contexte, c’est l’adresse q

disable_edac_trap: ; Désactiver la trap. Sinon
load [adresse], reg ; Lire 4 octets (lecture =

enable_edac_trap: ;
store reg, [adresse] ; Réécrire la valeur corr

On lit la valeur, c’est corrigé vu du logiciel par le maté‐

riel, on réécrit la valeur, tout est corrigé.

Cette trappe peut être déclenchée par n’importe quelle

instruction qui lit de la mémoire (ou par le fait de char‐

ger une instruction elle-même depuis la mémoire), et

on a même une tâche de fond (plus basse priorité, qui

tourne en permanence quand il reste du temps de cal‐

cul disponible) qui fait

// en gros. En vrai légèrement plus compliqué

void background_task(void) {

int address = MEMORY_START;

volatile int value;

while (1) {

value = *address; // s’il y a un bit flip en m

address += 4;

if (address >= MEMORY_END) {

address = MEMORY_START;

}

}

}

L’idée de cette fonction c’est de lire la mémoire régu‐

lièrement. Si on ne faisait pas ça, peut-être que cer‐

taines cases mémoires auraient deux bit flips, car pas

corrigé après le premier si on ne lit pas la mémoire

avant qu’un autre arrive. Ce n’est pas très fréquent

d’avoir des bit flips, mais sur les 6 satellites, en cumulé,

on en détecte quelques-uns par jour.

L’hypothèse

De retour à la case départ donc. On exécute apparem‐

ment l’instruction stockée dans %pc , valide. Et le

CPU nous dit qu’elle est invalide, mais clairement, elle

est valide. On tourne en rond, on est samedi ou

dimanche, fin d’après midi, et le satellite, lui aussi il

tourne en rond, sans problèmes. Tout à coup, quel‐

qu’un a l’idée de dire « bon, on ne résoudra pas ça

aujourd’hui. On se revoit lundi ? ». On rentre, je bois un

verre avec mes colocs (enfin, je suppose. C’était une

activité habituelle pour un weekend, ça, au moins)

Retour au bureau, et là (surement plus tard, pas lundi

9h) on a David (un collègue) qui propose : "Comme

clairement %pc est valide, est qu’on exécute quelque

chose d’invalide, est-ce qu’on est sûr qu’on a bien

enregistré %pc ?". On vérifie, le code qui fait ça a l’air

correct. En plus le contexte général, ce qu’il y a dans

les registres est correct. Toujours David "OK, le logiciel

est correct, mais est-ce qu’on est sûr que %pc c’est

bien toujours l’instruction qu’on exécute ?".

Donc, on vérifie, par acquit de conscience et on

remarque que non, pas nécessairement. Si on est dans

une trap, le %pc qu’on enregistre pointe vers l’ins‐

truction qui a provoqué la trap, pas l’instruction de la

trap qu’on exécute. Bon, OK, ça ne nous avance pas

nécessairement (mais si j’en parle…)

Nouvelle question donc : Si on est à %pc , quelles

sont les traps qui peuvent s’exécuter ? Il y a plein de

possibilités, la plupart viennent de causes extérieures

(timer matériel, plein d’autres évènements extérieurs)

et potentiellement aussi la trap de l’EDAC si on lit une

valeur (et l’instruction à %pc lit une valeur).

Donc techniquement, on pourrait aussi être n’importe

où dans le code (assembleur) de toutes les traps. Avant

on cherchait pourquoi c’était illégal d’exécuter %pc ,

maintenant on cherche pourquoi ça serait illégal d’exé‐

cuter %pc ou n’importe quelle ligne d’une trap

active/activable à ce moment-là.

Chez moi, ça marche

Sauf que le code des traps, c’est pas nous qui l’avons

écrit. C’est bien du code qui vient de l’entreprise, mais

il existe depuis plusieurs années, est utilisé sur le

même processeur depuis plusieurs années, et il a plu‐

sieurs dizaines d’années de vol (cumulé, en addition‐

nant les satellites) sans problème.

En suivant les principes bien connus du développe‐

ment logiciel, si on utilise un logiciel sur étagère, pas

besoin de le valider (surtout ça coute de l’argent. Cela

dit même si on avait essayé, je ne pense pas qu’on

aurait trouvé de problème), vu qu’il marche. Par acquit

de conscience, on demande, et on nous répond "bah

chez nous ça marche" (la légende veut qu’une histoire

similaire soit à l’origine de Docker, je ne sais pas si c’est

vrai, mais le fameux "it works on my desktop, ship my

desktop"…)

Vous avez peut-être lu le titre de l’article, donc vous

imaginez où je vais. On se demande « OK, pourquoi ça

marche pour eux, et pas pour nous ? » Quelles sont les

différences ?

on est sur le même CPU/MCU (donc non, c’est

pas ça)

on a changé de compilateur pour une nouvelle

version (mais 1. c’est un compilateur “certifié”, et

2. les traps sont en assembleur…)

on est en orbite plus basse, et on a plus de SEU

(mais même, quand on regarde leur historique, ils

en ont beaucoup aussi, et en cumulé, beaucoup

plus. Après… peut-être n’a-t-on pas de chance ?)

L’erreur

Ok, on a changé de compilateur, les traps sont en

assembleur, mais le reste du code est dans un langage

bien plus courant (non, je rigole, en vrai c’est en Ada…),

peut-être que l’interaction entre les traps et le reste du

code a changé ?

Pourquoi est-ce qu’on a décidé de changer de compila‐

teur ? Ah pour des histoires de taille mémoire (640 kB

should be enough? On avait même plus, genre 2 Mo

de ROM, 4 Mo de RAM, large… ou pas). D’ailleurs, au

moment du changement, on en a profité pour faire

quelques optimisations. Non pas des flags genre -O1
ou -O2 . Plus des choses sur le layout mémoire, on a

ajouté __attribute__((packed)) qui est sup‐

porté, on a un peu changé le linker script…

Par exemple, le packed , ça nous permet de gagner

de la place, avant toutes les variables étaient alignées

sur une adresse multiple de 4, que ça soit un nombre

sur quatre octets, ou un char d’un octet, ils pre‐

naient au moins quatre octets. Maintenant, on a mis

les data types multiples de quatre au début de la struc‐

ture, bien alignés, puis les types qui prenent deux

octets, on en met deux dans quatre octets (au lieu d’un

et de gacher deux octets pour rien), puis les types de

un octect, on en met 4.

D’ailleurs, par exemple, l’instruction à %pc , elle

charge une donnée d’un seul octet qui est dans une

adresse du type XXX+3 , où X est un multiple de 4.

C’est pas illégal de faire ça (donc non, toujours pas

d’instruction illégale ici)

Après quoi, c’est là où David revient (dans mon souve‐

nir en tout cas, ça venait beaucoup de lui, mais on était

beaucoup à échanger sur le sujet). "Ok, %pc lit une

donnée non alignée, et il le fait correctement. Mais s’il

y a un bit flip, il se passe quoi ?. Bah rien, EDAC détec‐

tée, trap, on exécute le code assembleur qui marche

sur les autres satellites.

Ah oui, mais non. Si on lit un octet, on peut lire

XXX+3 , mais si on lit 4 octets, c’est interdit. Il faut lire

une adresse multiple de 4. Et donc on a une EDAC, et

quand on rentre dans la trap

; adresse == XXX+3

disable_edac_trap: ;
load [adresse], reg ; Lire 4 octets

enable_edac_trap: ;
store reg, [adresse] ;

Ah oui, mais non. load ça lit 4 octets, c’est illégal de

lui passer une adresse non multiple de 4, c’est une ille‐

gal instruction. Donc ça pourrait être ça :

1. bit flip sur les quatre octets situés à XXX
(l’EDAC est toujours calculé sur 4 octets d’une

adresse alignée, même si on lit décalé)

2. on rentre dans la fonction qui contient %pc
3. on lit un octet à XXX+3
4. ça déclenche la trap

5. la trap essaye de lire 4 octets à XXX+3
6. ILLEGAL CPU INSTRUCTION , allez en prison

sans passer par la case départ

La reproduction

Sur le papier, ça marche. On peut même faire un petit

logiciel sur le banc, qui fait juste un load [XXX+3],
reg et qui génère une ILLEGAL CPU INSTRUC‐
TION . Mais évidemment nos managers (et notre

client) voudraient un peu plus qu’un « sur le papier,

c’est ça, trust me bro ».

Donc la question "c’est possible de reproduire exacte‐

ment comme dans l’espace, plutôt que de juste exécu‐

ter une instruction illégale à la main ?". Avec le vrai

logiciel qui était dans l’espace, pas un logiciel de test ?

Bien sûr, il suffit d’attendre d’avoir un bit flip, sur le

banc, juste au bon endroit, au bon moment. Vous avez

combien de siècles devant vous ? Ou alors est-ce

qu’on peut mettre le banc à côté d’un réacteur

nucléaire ? Ça devrait accélérer les choses (du bon côté

8

10
jan.

2026

https://linuxfr.org/proposer-un-contenu
https://linuxfr.org/compte/inscription
https://linuxfr.org/news
https://linuxfr.org/journaux
https://linuxfr.org/liens
https://linuxfr.org/forums
https://linuxfr.org/wiki
https://linuxfr.org/redaction
https://linuxfr.org/
https://linuxfr.org/sections/technologie
https://linuxfr.org/sections/technologie
https://linuxfr.org/news/it-works-on-my-satellite-ou-l-histoire-d-un-bug-dans-l-espace
https://linuxfr.org/news/it-works-on-my-satellite-ou-l-histoire-d-un-bug-dans-l-espace
https://linuxfr.org/news/it-works-on-my-satellite-ou-l-histoire-d-un-bug-dans-l-espace
https://linuxfr.org/users/2petitsverres
https://mastodon.social/@2PetitsVerres
https://linuxfr.org/users/oumph
http://creativecommons.org/licenses/by-sa/4.0/deed.fr
http://creativecommons.org/licenses/by-sa/4.0/deed.fr
https://linuxfr.org/tags/satellite/public
https://linuxfr.org/tags/bug/public
https://en.wikipedia.org/wiki/Error_detection_and_correction

Intéressant
Posté par Bruno (Mastodon) le 10 janvier 2026 à 11:17.

Évalué à 2 (+1/-0).

Merci du partage.

Je chipote mais les exemples d’as‐

sembleur sont du macro-assem‐

bleur.

On me murmure dans l'oreille qu'il n'y a plus que ça

depuis longtemps.

Bon sang le monde change, j'ai commencé en pro‐

grammant en hexadécimal…

Répondre

Envoyer un commentaire

Suivre le flux des commentaires

Note : les commentaires appartiennent à celles et ceux qui les ont postés.

Nous n’en sommes pas responsables.

Revenir en haut de page

Derniers commentaires

Vielle alarme / optio…
James Webb

Re: Je crois que j'ai c…
Slicer

Re: Je crois que j'ai c…
NON

Re: ia routeur

c'est pas beau

Au risque de me rép…

Re: Souvenirs, souv…
Intéressant

Re: Je crois que j'ai c…

Étiquettes (tags)
populaires

intelligence_artificielle

merdification

hppa

grands_modèles_de…
états-unis

sortie_version

donald_trump

administration_fran…

linux

capitalisme_de_surv…
capitalisme

note_de_lecture

Sites amis

April

Agenda du Libre

Framasoft

Éditions D-BookeR

Éditions Eyrolles

Éditions Diamond

Éditions ENI

La Quadrature du Net

Lea-Linux

En Vente Libre

Grafik Plus

Open Source Initiative

À propos de
LinuxFr.org

Mentions légales

Faire un don

L’équipe de LinuxFr.…

Informations sur le s…
Aide / Foire aux que…
Suivi des suggestion…

Règles de modération

Statistiques

API pour le dévelop…
Code source du site

Plan du site

Markdown EPUB

du mur de confinement. Ici, “bon”, ça veut dire mauvais

pour les humains)

On va quand même regarder si on peut provoquer un

bit flip autrement. Bon, a priori, en interne, au logiciel,

on ne sait pas comment faire. La doc du processeur

(qui vient avec l’edac) ne nous aide pas non plus. On

demande à ceux qui nous ont dit que « chez eux, ça

marche » qui nous répondent que la trap de l’edac, ils

ne l’ont jamais testé, c’est juste une revue de code.

Bon, on envoie quand même un courriel au fabricant

du proc, au cas où. Réponse rapide « je reviens vers

vous dès que je sais ». Quelques jours (2, 3 semaines ?)

plus tard : "Ah oui, c’est possible. D’ailleurs c’est docu‐

menté. Page WSYZ sur 5000, il y a **un* paragraphe

qui explique comment faire*".

Le TL/DR du paragraphe : Il est possible de désactiver

l’EDAC en écriture. Par contre il faut faire des choses

spécifiques, donc on a pas de commande prévue pour

le faire “simplement” depuis l’extérieur, il faudrait une

nouvelle fonction.

void generer_bit_flip(int address, int valeur)

*address = valeur; // écrit la valeur correcte

manipulate_specific_register_to_disable_edac()

*address = valeur ^ 0x00000001; // écrit la va

manipulate_specific_register_to_enable_edac();

}

Ça tombe bien, le logiciel qui est dans l’espace a deux

fonctionnalités qu’on a testé, mais jamais en vrai avec

un truc vraiment utile

1. on peut patcher la mémoire et écrire ce qu’on

veut, où on veut (code, données)

2. on a plusieurs “fonctions” périodiques qui ne

font rien, et qui sont prévues pour être patchées

si on veut ajouter quelque chose (via la fonction

de patch plus haut)

Donc on peut créer une fonction comme ça (en gros)

void generer_bit_flip(int address, int valeur)

static int actif = TRUE;

if (actif) {

*address = valeur; // écrit la valeur correcte

manipulate_specific_register_to_disable_edac()

*address = valeur ^ 0x00000001; // écrit la va

manipulate_specific_register_to_enable_edac();

actif = FALSE; // on ne veut le faire qu’une f

}

}

Une fois qu’on a la fonction, on la compile. Ensuite on

charge le logiciel normal sur le banc, on se met en

conditions « avant l’anomalie », on uploade la fonction,

on l’active et…

Le banc change de mode, passe du mode 2, au mode

3, sur le calculateur redondant. On vérifie le contexte,

même signature que l’anomalie en vol. C’est bon on a

fini. (Ouf, mon journal est déjà trop long)

La correction (Over-The-Air,
mais sans l’air)

Oui, non, pas exactement. On a une explication, il faut

une correction maintenant. Bon, c’est simple. Pour lire

une adresse alignée sur 4, il suffit de mettre deux bits à

0. Finalement, voilà le patch

address = address & ~0x3 ; ** Cette ligne est

disable_edac_trap: ;
load [adresse], reg ;

enable_edac_trap: ;
store reg, [adresse] ;

Oui, c’est un patch d’une instruction dans le binaire.

(Techniquement, 5 instructions, parce qu’il faut décaler

les 4 instructions existantes de 1, mais on avait des

noop en dessous, donc ça rentre)

La dernière question, c’est quelle stratégie d’ update

appliquer. On a techniquement quatre familles de

satellites à considérer :

1. les satellites « pré-existants », qui utilisent l’an‐

cien compilateur, sans packed et déjà dans

l’espace.

2. le satellite qui a eu l’anomalie.

3. les 5 autres satellites de la grappe.

4. les futurs satellites, non lancés.

Ce qui a été décidé : La première catégorie : Techni‐

quement, on pourrait discuter du fait qu’il y a un bug

ou non. Mais même si on considère qu’il y a un bug, il

ne peut pas être déclenché. Donc on ne touche à rien.

La catégorie 4, c’est facile. Ils sont au sol, on fait une

nouvelle version complète du logiciel, on reflashe la

rom en entier, et on vérifie.

Il reste les deux autres catégories. Bon la seule diffé‐

rence, c’est qu’un, toujours en mode 3, tourne pour

l’instant sur le calculateur redondant (on peut revenir

en mode 2, manuellement, si on veut). Donc on décide

« on va faire la même chose », et on va corriger le pro‐

blème (on aurait pu ne rien faire et dire « bah, si ça

arrive, on connaît et on revient à chaque fois manuel‐

lement en mode 2 »)

Là encore, même si on corrige, on a plusieurs choix :

1. Mettre à jour la ROM. En fait non, les ROM,

parce que chaque calculateur a la sienne. Et le

nominal ne peut pas écrire la ROM du redon‐

dant, et inversement. (Dès lors, si on veut pat‐

cher, qu’est-ce qu’on patche ? Le deux ROM ?

Faut-il reconfigurer à la main pour rebooter sur le

redondant ?)

2. utiliser un mécanisme prévu pour « patcher, mais

sans patcher la ROM ».

La solution 2, retenue, c’est un mécanisme (déjà dans

le logiciel) qui permet de mettre les infos dans une

autre mémoire (partagée par les deux calculateurs). Au

boot, la ROM est copiée dans la RAM (on exécute le

code depuis la RAM), et « avant de démarrer » on vient

regarder dans cette table, si l’on doit patcher la RAM.

Cela donne quelque chose comme :

ROM (logiciel original) --> Copie vers la RAM --> RAM

(logiciel original) --> fonction de patch au boot, vient

modifier la RAM --> RAM (trap corrigée) --> boot du

logiciel.

Conclusion

Qu’est-ce que je retiens principalement ?

quand on me dit que du code fonctionne, donc

qu’il est correct… j’ai un doute

Ce n’est pas parce que la doc explique quelque

chose qu’on peut le trouver. Surtout quand elle

fait 5000 pages… Il ne faut pas hésiter à

demander

Voila, en quelques pages, une vieille histoire qui m’a

marqué. Je suis probablement une des personnes qui a

participé à un des patchs le plus haut du monde (plus

de 1 000 km d’altitude)

Bon en vrai, la NASA fait des mises à jour logicielles

sur des rovers sur Mars, donc c’est clairement pas le

record mais c’est pas trop mal (ils ont même peut-être

des mises à jour sur leurs sondes plus loin de la terre)

Note : cette histoire date maintenant d’il y a plus de dix

ans. Il y a donc forcément des simplifications, des

imprécisions, et probablement des erreurs. Aucun

satellite n’a été maltraité pendant cette enquête. Il y en

a bien un qui est tombé à terre, mais ça c’était avant le

lancement.

Aller plus loin

 Journal à l’origine de la dépêche (14 clics)

(1 commentaire).

https://linuxfr.org/nodes/141302/comments/2010501
https://linuxfr.org/users/ragus
https://mastodon.social/@bmarand
https://linuxfr.org/nodes/141302/comments/2010501/answer#new_comment
https://linuxfr.org/nodes/141302/comments/nouveau
https://linuxfr.org/nodes/141302/comments.atom
https://linuxfr.org/users/tkr/liens/free-mobile-active-la-messagerie-vocale-visuelle-par-defaut-attention-aux-forfaits-2eur#comment-2010511
https://linuxfr.org/users/tkr/liens/free-mobile-active-la-messagerie-vocale-visuelle-par-defaut-attention-aux-forfaits-2eur#comment-2010511
https://linuxfr.org/users/tkr/liens/free-mobile-active-la-messagerie-vocale-visuelle-par-defaut-attention-aux-forfaits-2eur#comment-2010511
https://linuxfr.org/users/pas_pey/liens/eric-schmidt-va-financer-seul-le-successeur-du-telescope-spatial-hubble#comment-2010510
https://linuxfr.org/forums/general-general/posts/guides-et-documentations-sur-l-impression-3d#comment-2010509
https://linuxfr.org/forums/general-general/posts/guides-et-documentations-sur-l-impression-3d#comment-2010509
https://linuxfr.org/forums/general-general/posts/guides-et-documentations-sur-l-impression-3d#comment-2010509
https://linuxfr.org/forums/general-general/posts/guides-et-documentations-sur-l-impression-3d#comment-2010508
https://linuxfr.org/forums/general-general/posts/guides-et-documentations-sur-l-impression-3d#comment-2010507
https://linuxfr.org/forums/general-general/posts/guides-et-documentations-sur-l-impression-3d#comment-2010507
https://linuxfr.org/forums/general-general/posts/guides-et-documentations-sur-l-impression-3d#comment-2010507
https://linuxfr.org/users/zurvan-0/liens/allez-dire-a-discord-ce-que-vous-pensez-de-l-ia#comment-2010506
https://linuxfr.org/users/pas_pey/liens/une-ia-concoit-un-ordinateur-linux-fonctionnel-en-une-semaine#comment-2010505
https://linuxfr.org/forums/linux-noyau/posts/debian-12-vs-debian-13-meme-regle-comportement-different#comment-2010504
https://linuxfr.org/news/aux-sources-du-fun-n-1-retrouver-le-fun-dans-les-inutilitaires-graphiques#comment-2010503
https://linuxfr.org/news/aux-sources-du-fun-n-1-retrouver-le-fun-dans-les-inutilitaires-graphiques#comment-2010503
https://linuxfr.org/news/aux-sources-du-fun-n-1-retrouver-le-fun-dans-les-inutilitaires-graphiques#comment-2010503
https://linuxfr.org/users/wilk/liens/mit-non-ai-license#comment-2010502
https://linuxfr.org/users/wilk/liens/mit-non-ai-license#comment-2010502
https://linuxfr.org/users/wilk/liens/mit-non-ai-license#comment-2010502
https://linuxfr.org/forums/general-general/posts/guides-et-documentations-sur-l-impression-3d#comment-2010500
https://linuxfr.org/forums/general-general/posts/guides-et-documentations-sur-l-impression-3d#comment-2010500
https://linuxfr.org/forums/general-general/posts/guides-et-documentations-sur-l-impression-3d#comment-2010500
https://linuxfr.org/tags/intelligence_artificielle/public
https://linuxfr.org/tags/merdification/public
https://linuxfr.org/tags/hppa/public
https://linuxfr.org/tags/grands_mod%C3%A8les_de_langage/public
https://linuxfr.org/tags/grands_mod%C3%A8les_de_langage/public
https://linuxfr.org/tags/grands_mod%C3%A8les_de_langage/public
https://linuxfr.org/tags/%C3%A9tats-unis/public
https://linuxfr.org/tags/sortie_version/public
https://linuxfr.org/tags/donald_trump/public
https://linuxfr.org/tags/administration_fran%C3%A7aise/public
https://linuxfr.org/tags/administration_fran%C3%A7aise/public
https://linuxfr.org/tags/administration_fran%C3%A7aise/public
https://linuxfr.org/tags/linux/public
https://linuxfr.org/tags/capitalisme_de_surveillance/public
https://linuxfr.org/tags/capitalisme_de_surveillance/public
https://linuxfr.org/tags/capitalisme_de_surveillance/public
https://linuxfr.org/tags/capitalisme/public
https://linuxfr.org/tags/note_de_lecture/public
https://www.april.org/
https://www.agendadulibre.org/
https://www.framasoft.net/
https://www.d-booker.fr/
https://www.editions-eyrolles.com/Recherche/?q=linux
https://boutique.ed-diamond.com/
https://www.editions-eni.fr/recherche?exp=opensource
https://www.laquadrature.net/
https://lea-linux.org/
https://enventelibre.org/
https://grafik.plus/
https://opensource.org/
https://linuxfr.org/mentions_legales
https://linuxfr.org/faire_un_don
https://linuxfr.org/equipe
https://linuxfr.org/equipe
https://linuxfr.org/equipe
https://linuxfr.org/informations
https://linuxfr.org/informations
https://linuxfr.org/informations
https://linuxfr.org/aide
https://linuxfr.org/aide
https://linuxfr.org/aide
https://linuxfr.org/suivi
https://linuxfr.org/suivi
https://linuxfr.org/suivi
https://linuxfr.org/regles_de_moderation
https://linuxfr.org/statistiques
https://linuxfr.org/developpement
https://linuxfr.org/developpement
https://linuxfr.org/developpement
https://linuxfr.org/code_source_du_site
https://linuxfr.org/plan
https://linuxfr.org/news/it-works-on-my-satellite-ou-l-histoire-d-un-bug-dans-l-espace.md
https://linuxfr.org/news/it-works-on-my-satellite-ou-l-histoire-d-un-bug-dans-l-espace.epub
https://linuxfr.org/redirect/116719

