H philipperemy/

japanese-words-to-vectors (Public

<> Code (©) Issues

¥ master ~ ¥

e philipperemy Merge pull request ...

{1 Pull requests

©

Go to file

(® Actions

Q Notifications

f Projects

@m f27549c- 6 years ago @

M tests Refactor File/UTFS8 h... 8 years ago
0 .gitignore Refactor File/UTF8 h... 8 years ago
[Dockerfile Add Dockerfile 8 years ago
() README.md Update README.md 7 years ago
(3 cleanup.sh Update Cleanup Script 8 years ago
[9 generate_vectors.py add \n to the functio... 6 years ago
0 requirements.txt Update requirement... 7 years ago

[0 README

Japanese Word2Vec
CAICBIE!

About

Word2vec (word to vectors) approach for Japanese
language using Gensim (Deep Learning skip-gram and
CBOW models). The model is trained on the Japanese
version of Wikipedia available at jawiki-latest-pages-
articles.xml.bz2.

Definition: Word2vec is a group of related models that are
used to produce word embeddings. These models are
shallow, two-layer neural networks that are trained to
reconstruct linguistic contexts of words. Word2vec takes as its
input a large corpus of text and produces a high-dimensional
space (typically of several hundred dimensions), with each
unique word in the corpus being assigned a corresponding
vector in the space. Word vectors are positioned in the vector
space such that words that share common contexts in the
corpus are located in close proximity to one another in the
space.

Further reading about word2vec:
http://nlp.stanford.edu/projects/glove/

Usage

Generating the vectors from a wikipedia dump takes
about 2~3 hours on a Core i5, with the default
parameters.

git clone https://github.com/philipperemy/japal &
cd japanese-word-to-vectors

pip3 install -r requirements.txt # you can cre:
wget https://dumps.wikimedia.org/jawiki/latest.

will use TinySegmenter3 for the tokenization
python3 generate_vectors.py

recommended. will use the MeCab tokenizer. Ii
next section of the README called "Tokenize
python3 generate_vectors.py --mecab

If generate_vectors.py does not detect the file jawiki-
latest-pages-articles.xml.bz2 , it will download it
automatically before running the long generation of the
vectors.

Convert Wiki dump to text

The first step is to extract the text and the sentences of
the dump. It is done in this function:

INPUT_FILENAME = 'jawiki-latest-pages-articles Ll,j
JA_WIKI_TEXT_FILENAME = 'jawiki-latest-text.tx:
JA_WIKI_SENTENCES_FILENAME = 'jawiki-latest-te:
process_wiki_to_text(INPUT_FILENAME, JA WIKI_TI

The output consists of two files:

e JA_WIKI_TEXT_FILENAME whose content looks like:
trebuchet ms7 4> F 7N REIZ%EEKRT BB TH
% where each line corresponds to an article.

® JA WIKI_SENTENCES_FILENAME Where each line
corresponds to a sentence or chunk of words in the
text. This file will not be used in the word2vec
algorithm but can be useful to train a sentence to vec
(named skip-thoughts, available here
https://github.com/ryankiros/skip-thoughts/).

Tokenize the text

Tokenizing means separating the full text into words by
using spaces as delimiters. Two approaches are available
here:

TinySegmenter3 (easy but less accurate in the
tokenization phase)

For this, we use a library called TinySegmenter3 which is
able to tokenize japanese corpus with more than 95
percent accuracy (source: http://lilyx.net/tinysegmenter-
in-pythony/).

The outputis JA_WIKI_TEXT_TOKENS_FILENAME . It looks like
this: trebuchet ms Zzx>k TFIYNRHIUR X &

z Bk 95

MeCab (advanced but very accurate)

I strongly advise you to read this tutorial first: How to
install MeCab.

The installation depends on your OS:

MacOS

brew install mecab =
brew install mecab-ipadic

brew install git curl xz

git clone --depth 1 https://github.com/neologd.

cd mecab-ipadic-neologd
./bin/install-mecab-ipadic-neologd -n

pip3 install mecab-python3

Ubuntu

sudo apt-get install mecab mecab-ipadic libmec: &
sudo apt-get install mecab-ipadic-utf8

sudo apt-get install git curl

git clone --depth 1 https://github.com/neologd

cd mecab-ipadic-neologd

sudo ./bin/install-mecab-ipadic-neologd -n

pip3 install mecab-python3

Infer the vectors

Finally, the Gensim library is used to perform the
word2vec algorithm with the parameters:

e size of 50 (dimensionality of the feature vectors)

e window of 5 (maximum distance between the current
and predicted word within a sentence)

e min count of 5 (ignore all words with total frequency
lower than this)

e iter of 5 (number of iterations or epochs over the
corpus)

e number of workers equal to number of cores

While training, the console output looks like:

2016-09-04 02:54:38,354 : INFO : PROGRESS: at ! L;l
2016-09-04 02:54:39,346 : INFO : PROGRESS: at !
2016-09-04 02:54:40,356 : INFO : PROGRESS: at !
2016-09-04 02:54:41,390 : INFO : PROGRESS: at !

Once it's finished, 4 new files are generated:

e ja-gensim.50d.data.model . This file contains the
model in the binary format. Use model =
word2vec.load(fname) to get back your word2vec
model.

Y Fork 17 ¢ Star 86
@ Security |~ Insights
About

Word2vec (word to vectors)
approach for Japanese
language using Gensim and
Mecab.

wikipedia japanese word2vec

corpus gensim

japanese-language

word2vec-algorithm

0J Readme
A~ Activity
¥¢ 86 stars
® 3watching
¥ 17 forks

Report repository

Releases

No releases published

Packages
No packages published
Contributors 3

@ philipperemy Philippe Rémy

A vortexkd Chinnapa

™ mcps5601 Ying-Jia Lin

Languages

® Python 89.2%

® Dockerfile 7.7% Shell 3.1%

https://github.com/philipperemy
https://github.com/philipperemy/japanese-words-to-vectors
https://github.com/philipperemy/japanese-words-to-vectors/branches
https://github.com/philipperemy/japanese-words-to-vectors/tags
https://github.com/philipperemy
https://github.com/philipperemy/japanese-words-to-vectors/commits?author=philipperemy
https://github.com/philipperemy/japanese-words-to-vectors/commit/f27549c6c23c9538ef187eee53bc7cb1f93ff52a
https://github.com/philipperemy/japanese-words-to-vectors/pull/7
https://github.com/philipperemy/japanese-words-to-vectors/commit/f27549c6c23c9538ef187eee53bc7cb1f93ff52a
https://github.com/philipperemy/japanese-words-to-vectors/tree/master/tests
https://github.com/philipperemy/japanese-words-to-vectors/commit/b715726bbe9e8162b43340e1e0b8b189c230611d
https://github.com/philipperemy/japanese-words-to-vectors/commit/b715726bbe9e8162b43340e1e0b8b189c230611d
https://github.com/philipperemy/japanese-words-to-vectors/commit/b715726bbe9e8162b43340e1e0b8b189c230611d
https://github.com/philipperemy/japanese-words-to-vectors/blob/master/.gitignore
https://github.com/philipperemy/japanese-words-to-vectors/commit/b715726bbe9e8162b43340e1e0b8b189c230611d
https://github.com/philipperemy/japanese-words-to-vectors/commit/b715726bbe9e8162b43340e1e0b8b189c230611d
https://github.com/philipperemy/japanese-words-to-vectors/commit/b715726bbe9e8162b43340e1e0b8b189c230611d
https://github.com/philipperemy/japanese-words-to-vectors/blob/master/Dockerfile
https://github.com/philipperemy/japanese-words-to-vectors/commit/157658e65b5b6bb87c19bed8833b2ef26135b472
https://github.com/philipperemy/japanese-words-to-vectors/blob/master/README.md
https://github.com/philipperemy/japanese-words-to-vectors/commit/3be4e6259bcc0e2f8fcf3516c59009a7c5f04c82
https://github.com/philipperemy/japanese-words-to-vectors/blob/master/cleanup.sh
https://github.com/philipperemy/japanese-words-to-vectors/commit/3c16067802b46b2044448b85d3ccf9e556e650e3
https://github.com/philipperemy/japanese-words-to-vectors/blob/master/generate_vectors.py
https://github.com/philipperemy/japanese-words-to-vectors/commit/861d86cd115034376811449bc6720a269ac82c52
https://github.com/philipperemy/japanese-words-to-vectors/commit/861d86cd115034376811449bc6720a269ac82c52
https://github.com/philipperemy/japanese-words-to-vectors/commit/861d86cd115034376811449bc6720a269ac82c52
https://github.com/philipperemy/japanese-words-to-vectors/blob/master/requirements.txt
https://github.com/philipperemy/japanese-words-to-vectors/commit/2f2745ec33140635cbc145642ef5b5e17cab7995
https://github.com/philipperemy/japanese-words-to-vectors/commit/2f2745ec33140635cbc145642ef5b5e17cab7995
https://github.com/philipperemy/japanese-words-to-vectors/commit/2f2745ec33140635cbc145642ef5b5e17cab7995
https://dumps.wikimedia.org/jawiki/latest/
https://dumps.wikimedia.org/jawiki/latest/
http://nlp.stanford.edu/projects/glove/
https://github.com/ryankiros/skip-thoughts/
https://pypi.python.org/pypi/tinysegmenter3/0.1.0
http://lilyx.net/tinysegmenter-in-python/
http://lilyx.net/tinysegmenter-in-python/
http://www.robfahey.co.uk/blog/japanese-text-analysis-in-python/
http://www.robfahey.co.uk/blog/japanese-text-analysis-in-python/
https://radimrehurek.com/gensim/
https://github.com/topics/wikipedia
https://github.com/topics/japanese
https://github.com/topics/word2vec
https://github.com/topics/corpus
https://github.com/topics/gensim
https://github.com/topics/japanese-language
https://github.com/topics/word2vec-algorithm
https://github.com/philipperemy/japanese-words-to-vectors/activity
https://github.com/philipperemy/japanese-words-to-vectors/activity
https://github.com/philipperemy/japanese-words-to-vectors/stargazers
https://github.com/philipperemy/japanese-words-to-vectors/stargazers
https://github.com/philipperemy/japanese-words-to-vectors/watchers
https://github.com/philipperemy/japanese-words-to-vectors/watchers
https://github.com/philipperemy/japanese-words-to-vectors/forks
https://github.com/philipperemy/japanese-words-to-vectors/forks
https://github.com/contact/report-content?content_url=https%3A%2F%2Fgithub.com%2Fphilipperemy%2Fjapanese-words-to-vectors&report=philipperemy+%28user%29
https://github.com/philipperemy/japanese-words-to-vectors/releases
https://github.com/users/philipperemy/packages?repo_name=japanese-words-to-vectors
https://github.com/philipperemy/japanese-words-to-vectors/graphs/contributors
https://github.com/philipperemy
https://github.com/philipperemy
https://github.com/philipperemy
https://github.com/philipperemy
https://github.com/vortexkd
https://github.com/vortexkd
https://github.com/vortexkd
https://github.com/vortexkd
https://github.com/mcps5601
https://github.com/mcps5601
https://github.com/mcps5601
https://github.com/mcps5601
https://github.com/philipperemy/japanese-words-to-vectors/search?l=python
https://github.com/philipperemy/japanese-words-to-vectors/search?l=dockerfile
https://github.com/philipperemy/japanese-words-to-vectors/search?l=shell
https://github.com/login?return_to=%2Fphilipperemy%2Fjapanese-words-to-vectors
https://github.com/login?return_to=%2Fphilipperemy%2Fjapanese-words-to-vectors
https://github.com/login?return_to=%2Fphilipperemy%2Fjapanese-words-to-vectors
https://github.com/philipperemy/japanese-words-to-vectors
https://github.com/philipperemy/japanese-words-to-vectors/issues
https://github.com/philipperemy/japanese-words-to-vectors/pulls
https://github.com/philipperemy/japanese-words-to-vectors/actions
https://github.com/philipperemy/japanese-words-to-vectors/projects
https://github.com/philipperemy/japanese-words-to-vectors/security
https://github.com/philipperemy/japanese-words-to-vectors/pulse
https://github.com/philipperemy/japanese-words-to-vectors/commits/master/
https://github.com/
https://github.com/login?return_to=https%3A%2F%2Fgithub.com%2Fphilipperemy%2Fjapanese-words-to-vectors

e ja-gensim.50d.data.txt . This file contains the model
vectors in the text format. Can be used in any other
script without the Gensim library!

® ja-gensim.50d.data.model.synlneg.npy and ja-
gensim.50d.data.model.wv.syn@.npy . Files generated
automatically. Contains some numpy arrays (weights
and other parameters). It must be in the same
directory as the model.

Finally, let's inspect ja-gensim.50d.data.txt

D 0.128774 3.631298 -3.058414 -0.434418 -0.30¢ l'_l;l
I -2.019490 4.359702 -1.845176 -2.663986 1.77¢4
& 0.296134 4.136690 -3.184480 -0.817397 0.555¢C

Here we can see the vectors for @, iZ and (3 .If we go
deeper, we can see longer words such as X . The size of
the vocabulary is the number of lines of this file (one line
equals one word and its vector representation).

wc -1 ja-gensim.50d.data.txt Yields 1200627 words.

References

e Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. Efficient Estimation of Word Representations in
Vector Space. In Proceedings of Workshop at ICLR,
2013.

e Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg

Corrado, and Jeffrey Dean. Distributed
Representations of Words and Phrases and their

Terms Privacy Security Status Community Docs Contact
Do not share my personal information

O © 2026 GitHub, Inc.

Manage cookies

https://radimrehurek.com/gensim/
https://docs.github.com/site-policy/github-terms/github-terms-of-service
https://docs.github.com/site-policy/privacy-policies/github-privacy-statement
https://github.com/security
https://www.githubstatus.com/
https://github.community/
https://docs.github.com/
https://support.github.com/?tags=dotcom-footer
https://github.com/

