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1. Core Architecture: Beyond
Client-Server

MCP implements a “Mediated Access Pattern” - the Host acts as

a security broker between Al and external resources:
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~~ Key Architectural Insights

1. Host as Security Broker: The Host mediates ALL Al-resource
interactions

2. 1:1 Client-Server Mapping: Each resource type gets
dedicated, isolated communication

3. Capability-Based Security: Servers declare what they can do,
Hosts decide what to allow

4. Transport Agnostic: Protocol works over stdio, HTTP,
WebSockets, etc.

71 Layered Architecture: Separation
of Concerns

Protocol layer

The protocol layer handles message framing, request/response

linking, and high-level communication patterns.

TypeScript  Python

class Protocol<Request, Notification, Result> {
// Handle incoming requests
setRequestHandler<T>(schema: T, handler: (request:

// Handle incoming notifications
setNotificationHandler<T>(schema: T, handler: (not

// Send requests and await responses
request<T>(request: Request, schema: T, options?:

// Send one-way notifications
notification(notification: Notification): Promises

Key classes include:

e Protocol
e Client

® Server

Transport layer

The transport layer handles the actual communication between
clients and servers. MCP supports multiple transport

mechanisms:

1. Stdio transport
e Uses standard input/output for communication

* |deal for local processes
2. HTTP with SSE transport

* Uses Server-Sent Events for server-to-client messages

e HTTP POST for client-to-server messages

All transports use JSON-RPC 2.0 to exchange messages. See the
specification for detailed information about the Model Context

Protocol message format.

Message types
MCP has these main types of messages:

1. Requests expect a response from the other side:

interface Request {
method: string;
params?: { ... };

2. Results are successful responses to requests:

interface Result {
[key: string]: unknown;

3. Errors indicate that a request failed:

interface Error {
code: number;
message: string;
data?: unknown;

4. Notifications are one-way messages that don’t expect a

response:
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Client Server

1. Client sends initialize request with protocol version and
capabilities

2. Server responds with its protocol version and capabilities
3. Client sends initialized notification as acknowledgment

4. Normal message exchange begins

2. Message exchange
After initialization, the following patterns are supported:

e Request-Response: Client or server sends requests, the other
responds

* Notifications: Either party sends one-way messages

3. Termination

Either party can terminate the connection:

e Clean shutdown via close()
e Transport disconnection

e Error conditions

Error handling

MCP defines these standard error codes:

enum ErrorCode {
// Standard JSON-RPC error codes
ParseError = -32700,
InvalidRequest = -32600,
MethodNotFound = -32601,
InvalidParams -32602,
InternalError = -32603

SDKs and applications can define their own error codes above
-32000.

Errors are propagated through:

e Error responses to requests
e Error events on transports

e Protocol-level error handlers

Implementation example

Here’s a basic example of implementing an MCP server:

TypeScript  Python

import { Server } from "@modelcontextprotocol/sdk/sery
import { StdioServerTransport } from "@modelcontextprc

const server = new Server({
name: "example-server",
version: "1.0.0"

A
capabilities: {
resources: {}

}
1)

// Handle requests
server.setRequestHandler (ListResourcesRequestSchema, &
return {
resources: [

{

uri: "example://resource",
name: "Example Resource"

]
i
)

// Connect transport
const transport = new StdioServerTransport();
await server.connect(transport);

Best practices

Transport selection

1. Local communication
» Use stdio transport for local processes
 Efficient for same-machine communication
e Simple process management
2. Remote communication
e Use SSE for scenarios requiring HTTP compatibility

» Consider security implications including authentication
and authorization

Message handling

1. Request processing
e Validate inputs thoroughly
e Use type-safe schemas
e Handle errors gracefully
e Implement timeouts
2. Progress reporting
e Use progress tokens for long operations
e Report progress incrementally
e Include total progress when known
3. Error management
e Use appropriate error codes
* Include helpful error messages

e Clean up resources on errors

Security considerations

1. Transport security
e Use TLS for remote connections
» Validate connection origins

¢ Implement authentication when needed

2. Message validation

Validate all incoming messages

Sanitize inputs

Check message size limits

Verify JSON-RPC format
3. Resource protection
e Implement access controls
» Validate resource paths
e Monitor resource usage
e Rate limit requests
4. Error handling
e Don't leak sensitive information
e Log security-relevant errors
e Implement proper cleanup

e Handle DoS scenarios

Debugging and monitoring

1. Logging

Log protocol events

Track message flow

Monitor performance

Record errors

2. Diagnostics
e Implement health checks
* Monitor connection state
e Track resource usage
* Profile performance

3. Testing
* Test different transports
» Verify error handling
e Check edge cases

e Load test servers
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