
M… C… MCP Architecture: Design Philosophy & Engineering Princip

MCP Architecture: Design
Philosophy & Engineering
Principles

MCP Architecture: Design
Philosophy & Engineering
Principles

Understanding MCP’s architecture requires thinking beyond

simple client-server patterns. This is a protocol designed for AI-

first computing, where traditional request-response models meet

the dynamic, context-rich world of Large Language Models.

🏗️ Architectural Perspective: MCP solves the “AI

Integration Paradox” - how to give AI systems rich,

secure access to external resources without creating

security nightmares or integration complexity.

🎯 Design Philosophy: Why These
Choices Matter

The AI Integration Challenge

Traditional APIs were designed for predictable, human-designed

workflows. AI systems need:

Dynamic resource discovery (AI doesn’t know what it needs

until it needs it)

Rich context exchange (not just data, but metadata,

relationships, capabilities)

Secure sandboxing (AI can’t be trusted with direct system

access)

Bidirectional communication (AI needs to ask questions, not

just consume data)

MCP’s Architectural Response

🏗️ MCP Architecture

🧠 AI-First Design

Principles
🔍 Dynamic Discovery

AI finds what it needs

🛡️ Secure Sandboxing

Controlled resource access

💬 Rich Context

Metadata + relationships

🔄 Bidirectional Flow

AI can ask questions

📡 Protocol Layer

Message routing & lifecycle

🚚 Transport Layer

Communication

mechanisms

🎭 Capability System

Feature negotiation

🔐 Security Model

Access control & validation

🏛️ Core Architecture: Beyond
Client-Server

MCP implements a “Mediated Access Pattern” - the Host acts as

a security broker between AI and external resources:

🌐 External Resources

🏠 Host Application

(Security Broker)

🧠 AI System (LLM)

Requests context/tools

Secure Protocol Secure Protocol Secure Protocol

Large Language Model

Needs: Context, Tools, Data

Host Process

(Claude Desktop, IDE, etc.)

MCP Client A

🔗 Database Access

MCP Client B

🔗 File System

MCP Client C

🔗 Web APIs

MCP Server A

📊 PostgreSQL

MCP Server B

📁 File System

MCP Server C

🌍 REST APIs

🔑 Key Architectural Insights

1. Host as Security Broker: The Host mediates ALL AI-resource

interactions

2. 1:1 Client-Server Mapping: Each resource type gets

dedicated, isolated communication

3. Capability-Based Security: Servers declare what they can do,

Hosts decide what to allow

4. Transport Agnostic: Protocol works over stdio, HTTP,

WebSockets, etc.

🏗️ Layered Architecture: Separation
of Concerns

Protocol layer

The protocol layer handles message framing, request/response

linking, and high-level communication patterns.

TypeScript Python

Key classes include:

Protocol

Client

Server

Transport layer

The transport layer handles the actual communication between

clients and servers. MCP supports multiple transport

mechanisms:

1. Stdio transport

Uses standard input/output for communication

Ideal for local processes

2. HTTP with SSE transport

Uses Server-Sent Events for server-to-client messages

HTTP POST for client-to-server messages

All transports use JSON-RPC 2.0 to exchange messages. See the

specification for detailed information about the Model Context

Protocol message format.

Message types

MCP has these main types of messages:

1. Requests expect a response from the other side:

2. Results are successful responses to requests:

3. Errors indicate that a request failed:

4. Notifications are one-way messages that don’t expect a

response:

Connection lifecycle

1. Initialization

ServerClient

ServerClient

Connection ready for use

initialize request

initialize response

initialized notification

1. Client sends initialize request with protocol version and

capabilities

2. Server responds with its protocol version and capabilities

3. Client sends initialized notification as acknowledgment

4. Normal message exchange begins

2. Message exchange

After initialization, the following patterns are supported:

Request-Response: Client or server sends requests, the other

responds

Notifications: Either party sends one-way messages

3. Termination

Either party can terminate the connection:

Clean shutdown via close()

Transport disconnection

Error conditions

Error handling

MCP defines these standard error codes:

SDKs and applications can define their own error codes above

-32000.

Errors are propagated through:

Error responses to requests

Error events on transports

Protocol-level error handlers

Implementation example

Here’s a basic example of implementing an MCP server:

TypeScript Python

Best practices

Transport selection

1. Local communication

Use stdio transport for local processes

Efficient for same-machine communication

Simple process management

2. Remote communication

Use SSE for scenarios requiring HTTP compatibility

Consider security implications including authentication

and authorization

Message handling

1. Request processing

Validate inputs thoroughly

Use type-safe schemas

Handle errors gracefully

Implement timeouts

2. Progress reporting

Use progress tokens for long operations

Report progress incrementally

Include total progress when known

3. Error management

Use appropriate error codes

Include helpful error messages

Clean up resources on errors

Security considerations

1. Transport security

Use TLS for remote connections

Validate connection origins

Implement authentication when needed

2. Message validation

Validate all incoming messages

Sanitize inputs

Check message size limits

Verify JSON-RPC format

3. Resource protection

Implement access controls

Validate resource paths

Monitor resource usage

Rate limit requests

4. Error handling

Don’t leak sensitive information

Log security-relevant errors

Implement proper cleanup

Handle DoS scenarios

Debugging and monitoring

1. Logging

Log protocol events

Track message flow

Monitor performance

Record errors

2. Diagnostics

Implement health checks

Monitor connection state

Track resource usage

Profile performance

3. Testing

Test different transports

Verify error handling

Check edge cases

Load test servers

Understanding Model Context

Protocol (MCP)

MCP Learning Path: From Zero

to Hero

Quickstart

Core Concepts

MCP Tutorials: From

Concept to Production

MCP Server Ecosystem: From

Proof-of-Concept to Production

Clients

MCP FAQ: Expert Answers to

Real-World Questions

MCP Best Practices:

Architecture & Implementation

Guide

SDK

Build an MCP Client (Core)

More

Docs ↗

Specification ↗

About

MCP Architecture: Design

Philosophy & Engineering

Principles

Prompts

Resources

Roots

Sampling

Tools

Transports

 class Protocol<Request, Notification, Result> {
 // Handle incoming requests
 setRequestHandler<T>(schema: T, handler: (request:

 // Handle incoming notifications
 setNotificationHandler<T>(schema: T, handler: (not

 // Send requests and await responses
 request<T>(request: Request, schema: T, options?:

 // Send one-way notifications
 notification(notification: Notification): Promise<
 }

interface Request {
 method: string;
 params?: { ... };
}

interface Result {
 [key: string]: unknown;
}

interface Error {
 code: number;
 message: string;
 data?: unknown;
}

interface Notification {
 method: string;
 params?: { ... };
}

enum ErrorCode {
 // Standard JSON-RPC error codes
 ParseError = -32700,
 InvalidRequest = -32600,
 MethodNotFound = -32601,
 InvalidParams = -32602,
 InternalError = -32603
}

 import { Server } from "@modelcontextprotocol/sdk/serv
 import { StdioServerTransport } from "@modelcontextpro

 const server = new Server({
 name: "example-server",
 version: "1.0.0"
 }, {
 capabilities: {
 resources: {}
 }
 });

 // Handle requests
 server.setRequestHandler(ListResourcesRequestSchema, a
 return {
 resources: [
 {
 uri: "example://resource",
 name: "Example Resource"
 }
]
 };
 });

 // Connect transport
 const transport = new StdioServerTransport();
 await server.connect(transport);

Model Context Protocol

（MCP）
Home Documentation Specification Tools Blog Search... CTRL K

Welcome to modelcontextprotocol.info

modelcontextprotocol.info asks for your consent

to use your personal data for the following

purposes:

Personalised advertising and content, advertising and content

measurement, audience research and services development

Store and/or access information on a device

Your personal data will be processed and information from your device

(cookies, unique identifiers, and other device data) may be stored by,

accessed by and shared with 210 partners, or used specifically by this site.

We and our partners may use precise geolocation data.

Some vendors may process your personal data on the basis of legitimate

interest, which you can object to by managing your options below. Look

for a link at the bottom of this page or in the site menu to manage or

withdraw consent in privacy and cookie settings.

Learn more

List of partners.

Manage options

Do not consent Consent

https://modelcontextprotocol.info/docs/
https://modelcontextprotocol.info/docs/
https://modelcontextprotocol.info/docs/
https://modelcontextprotocol.info/docs/concepts/
https://modelcontextprotocol.info/docs/concepts/
https://modelcontextprotocol.info/docs/concepts/
https://www.jsonrpc.org/
https://spec.modelcontextprotocol.info/
https://modelcontextprotocol.info/docs/introduction/
https://modelcontextprotocol.info/docs/learning-path/
https://modelcontextprotocol.info/docs/quickstart/
https://modelcontextprotocol.info/docs/concepts/
https://modelcontextprotocol.info/docs/tutorials/
https://modelcontextprotocol.info/docs/examples/
https://modelcontextprotocol.info/docs/clients/
https://modelcontextprotocol.info/docs/faqs/
https://modelcontextprotocol.info/docs/best-practices/
https://modelcontextprotocol.info/docs/sdk/
https://modelcontextprotocol.info/docs/development/build-client/
https://modelcontextprotocol.info/docs/
https://modelcontextprotocol.info/specification/
https://modelcontextprotocol.info/about
https://modelcontextprotocol.info/docs/concepts/architecture/
https://modelcontextprotocol.info/docs/concepts/prompts/
https://modelcontextprotocol.info/docs/concepts/resources/
https://modelcontextprotocol.info/docs/concepts/roots/
https://modelcontextprotocol.info/docs/concepts/sampling/
https://modelcontextprotocol.info/docs/concepts/tools/
https://modelcontextprotocol.info/docs/concepts/transports/
https://modelcontextprotocol.info/
https://modelcontextprotocol.info/
https://modelcontextprotocol.info/docs/
https://modelcontextprotocol.info/specification/
https://modelcontextprotocol.info/tools/
https://modelcontextprotocol.info/blog/

Prompts

Model Context Protocol Hub MCP 中文站 A2A Protocol AP2 Lab ACP Protocol Agent2Agent 文档

AI to Sora ChatGPT 中文 UCP 技术 Clawd Bot

Powered by ModelContextProtocol

© 2024 ModelContextProtocol.Info.

English

Welcome to modelcontextprotocol.info

modelcontextprotocol.info asks for your consent

to use your personal data for the following

purposes:

Personalised advertising and content, advertising and content

measurement, audience research and services development

Store and/or access information on a device

Your personal data will be processed and information from your device

(cookies, unique identifiers, and other device data) may be stored by,

accessed by and shared with 210 partners, or used specifically by this site.

We and our partners may use precise geolocation data.

Some vendors may process your personal data on the basis of legitimate

interest, which you can object to by managing your options below. Look

for a link at the bottom of this page or in the site menu to manage or

withdraw consent in privacy and cookie settings.

List of partners.

https://modelcontextprotocol.info/docs/concepts/prompts/
https://modelcontextprotocol.info/
https://mcpcn.com/
https://a2acn.com/
https://ap2lab.com/
https://acplib.com/
https://agent2agent.info/
https://aitosora.com/
https://chatgptcn.com/
https://ucp.md/
https://clawdbot.sh/
https://github.com/imfing/hextra

