O Model Context Protocol
(McCP)

Home Documentation Specification Tools Blog Search... CTRL K

Understanding Model Context M.. > C.. > MCP Architecture: Design Philosophy & Engineering Princip

Protocol (MCP) ° =

MCP Learning Path: From Zero MCP ArChIteCture: DeSIgn

to Hero Philosophy & Engineering

Quickstar : Principles

e MCP Architecture: Design
Philosophy & Engineering Philosophy & Engineering

Principles Pr'n R I

Prompts I CIp es

Hesources Understanding MCP’s architecture requires thinking beyond

Roots simple client-server patterns. This is a protocol designed for Al-

Sampling first computing, where traditional request-response models meet
the dynamic, context-rich world of Large Language Models.

Tools

Transports %7 Architectural Perspective: MCP solves the “Al

MCP Tutorials: From . Integration Paradox” - how to give Al systems rich,

Concept to Production . .
secure access to external resources without creatlng

MCP Server Ecosystem: From security nightmares or integration complexity.
Proof-of-Concept to Production

Clients
P A B A @ Design Philosophy: Why These
Real-World Questions Choices Matter

MCP Best Practices:
Architecture & Implementation

Guide The Al Integration Challenge

SDK >

Traditional APIs were designed for predictable, human-designed

Build an MCP Client (Core
(Core) workflows. Al systems need:

More » Dynamic resource discovery (Al doesn't know what it needs
until it needs it)
Docs ~
 Rich context exchange (not just data, but metadata,
Specification relationships, capabilities)
About » Secure sandboxing (Al can't be trusted with direct system

access)

 Bidirectional communication (Al needs to ask questions, not
just consume data)

MCP’s Architectural Response

o Al-First Design

. Principle
{, Dynamic Discovery =] Bidirectional Flow G2 Rich Context Secure Sandboxing

Al finds what it needs Al can ask questions Metadata + relationships Controlled resource access

7 MCP Architecture

3 Transport Layer
» Protocol Layer . #. Capability System « Security Model
Communication
Message routing & lifecycle Feature negotiation Access control & validation
mechanisms

1. Core Architecture: Beyond
Client-Server

MCP implements a “Mediated Access Pattern” - the Host acts as

a security broker between Al and external resources:

& Al System (LLM)

Large Language Model

Needs: Context, Tools, Data

Requests context/tools

1 Host Apm:jcation

Host Process
(Claude Desktop, IDE, etc.)

— ™

MCP Client A MCP Client B MCP Client C
%/ Database Access %/ File System % Web APIs
Secure Protocol Secure Protocol Secure Protocol
i &) External F;lesources l
MCP Server A MCP Server B MCP Server C
1| PostgreSQL File System () RESTAPIs

~~ Key Architectural Insights

1. Host as Security Broker: The Host mediates ALL Al-resource
interactions

2. 1:1 Client-Server Mapping: Each resource type gets
dedicated, isolated communication

3. Capability-Based Security: Servers declare what they can do,
Hosts decide what to allow

4. Transport Agnostic: Protocol works over stdio, HTTP,
WebSockets, etc.

71 Layered Architecture: Separation
of Concerns

Protocol layer

The protocol layer handles message framing, request/response

linking, and high-level communication patterns.

TypeScript Python

class Protocol<Request, Notification, Result> {
// Handle incoming requests
setRequestHandler<T>(schema: T, handler: (request:

// Handle incoming notifications
setNotificationHandler<T>(schema: T, handler: (not

// Send requests and await responses
request<T>(request: Request, schema: T, options?:

// Send one-way notifications
notification(notification: Notification): Promises

Key classes include:

e Protocol
e Client

® Server

Transport layer

The transport layer handles the actual communication between
clients and servers. MCP supports multiple transport

mechanisms:

1. Stdio transport
e Uses standard input/output for communication

* |deal for local processes
2. HTTP with SSE transport

* Uses Server-Sent Events for server-to-client messages

e HTTP POST for client-to-server messages

All transports use JSON-RPC 2.0 to exchange messages. See the
specification for detailed information about the Model Context

Protocol message format.

Message types
MCP has these main types of messages:

1. Requests expect a response from the other side:

interface Request {
method: string;
params?: { ... };

2. Results are successful responses to requests:

interface Result {
[key: string]: unknown;

3. Errors indicate that a request failed:

interface Error {
code: number;
message: string;
data?: unknown;

4. Notifications are one-way messages that don’t expect a

response:

Welcome to modelcontextprotocol.info

modelcontextprotocol.info asks for your consent
to use your personal data for the following
purposes:

o Personalised advertising and content, advertising and content
measurement, audience research and services development

Lo Store and/or access information on a device

v Learn more

Your personal data will be processed and information from your device
(cookies, unique identifiers, and other device data) may be stored by,
accessed by and shared with 210 partners, or used specifically by this site.
We and our partners may use precise geolocation data. List of partners.

Some vendors may process your personal data on the basis of legitimate
interest, which you can object to by managing your options below. Look
for a link at the bottom of this page or in the site menu to manage or
withdraw consent in privacy and cookie settings.

Do not consent Consent

Manage options

Client Server

1. Client sends initialize request with protocol version and
capabilities

2. Server responds with its protocol version and capabilities
3. Client sends initialized notification as acknowledgment

4. Normal message exchange begins

2. Message exchange
After initialization, the following patterns are supported:

e Request-Response: Client or server sends requests, the other
responds

* Notifications: Either party sends one-way messages

3. Termination

Either party can terminate the connection:

e Clean shutdown via close()
e Transport disconnection

e Error conditions

Error handling

MCP defines these standard error codes:

enum ErrorCode {
// Standard JSON-RPC error codes
ParseError = -32700,
InvalidRequest = -32600,
MethodNotFound = -32601,
InvalidParams -32602,
InternalError = -32603

SDKs and applications can define their own error codes above
-32000.

Errors are propagated through:

e Error responses to requests
e Error events on transports

e Protocol-level error handlers

Implementation example

Here’s a basic example of implementing an MCP server:

TypeScript Python

import { Server } from "@modelcontextprotocol/sdk/sery
import { StdioServerTransport } from "@modelcontextprc

const server = new Server({
name: "example-server",
version: "1.0.0"

A
capabilities: {
resources: {}

}
1)

// Handle requests
server.setRequestHandler (ListResourcesRequestSchema, &
return {
resources: [

{

uri: "example://resource",
name: "Example Resource"

]
i
)

// Connect transport
const transport = new StdioServerTransport();
await server.connect(transport);

Best practices

Transport selection

1. Local communication
» Use stdio transport for local processes
 Efficient for same-machine communication
e Simple process management
2. Remote communication
e Use SSE for scenarios requiring HTTP compatibility

» Consider security implications including authentication
and authorization

Message handling

1. Request processing
e Validate inputs thoroughly
e Use type-safe schemas
e Handle errors gracefully
e Implement timeouts
2. Progress reporting
e Use progress tokens for long operations
e Report progress incrementally
e Include total progress when known
3. Error management
e Use appropriate error codes
* Include helpful error messages

e Clean up resources on errors

Security considerations

1. Transport security
e Use TLS for remote connections
» Validate connection origins

¢ Implement authentication when needed

2. Message validation

Validate all incoming messages

Sanitize inputs

Check message size limits

Verify JSON-RPC format
3. Resource protection
e Implement access controls
» Validate resource paths
e Monitor resource usage
e Rate limit requests
4. Error handling
e Don't leak sensitive information
e Log security-relevant errors
e Implement proper cleanup

e Handle DoS scenarios

Debugging and monitoring

1. Logging

Log protocol events

Track message flow

Monitor performance

Record errors

2. Diagnostics
e Implement health checks
* Monitor connection state
e Track resource usage
* Profile performance

3. Testing
* Test different transports
» Verify error handling
e Check edge cases

e Load test servers

https://modelcontextprotocol.info/docs/
https://modelcontextprotocol.info/docs/
https://modelcontextprotocol.info/docs/
https://modelcontextprotocol.info/docs/concepts/
https://modelcontextprotocol.info/docs/concepts/
https://modelcontextprotocol.info/docs/concepts/
https://www.jsonrpc.org/
https://spec.modelcontextprotocol.info/
https://modelcontextprotocol.info/docs/introduction/
https://modelcontextprotocol.info/docs/learning-path/
https://modelcontextprotocol.info/docs/quickstart/
https://modelcontextprotocol.info/docs/concepts/
https://modelcontextprotocol.info/docs/tutorials/
https://modelcontextprotocol.info/docs/examples/
https://modelcontextprotocol.info/docs/clients/
https://modelcontextprotocol.info/docs/faqs/
https://modelcontextprotocol.info/docs/best-practices/
https://modelcontextprotocol.info/docs/sdk/
https://modelcontextprotocol.info/docs/development/build-client/
https://modelcontextprotocol.info/docs/
https://modelcontextprotocol.info/specification/
https://modelcontextprotocol.info/about
https://modelcontextprotocol.info/docs/concepts/architecture/
https://modelcontextprotocol.info/docs/concepts/prompts/
https://modelcontextprotocol.info/docs/concepts/resources/
https://modelcontextprotocol.info/docs/concepts/roots/
https://modelcontextprotocol.info/docs/concepts/sampling/
https://modelcontextprotocol.info/docs/concepts/tools/
https://modelcontextprotocol.info/docs/concepts/transports/
https://modelcontextprotocol.info/
https://modelcontextprotocol.info/
https://modelcontextprotocol.info/docs/
https://modelcontextprotocol.info/specification/
https://modelcontextprotocol.info/tools/
https://modelcontextprotocol.info/blog/

Welcome to modelcontextprotocol.info

modelcontextprotocol.info asks for your consent
to use your personal data for the following
purposes:

o Personalised advertising and content, advertising and content
measurement, audience research and services development

Lo Store and/or access information on a device

Your personal data will be processed and information from your device
(cookies, unique identifiers, and other device data) may be stored by,
accessed by and shared with 210 partners, or used specifically by this site.
We and our partners may use precise geolocation data. List of partners.

Some vendors may process your personal data on the basis of legitimate
interest, which you can object to by managing your options below. Look
for a link at the bottom of this page or in the site menu to manage or
withdraw consent in privacy and cookie settings.

https://modelcontextprotocol.info/docs/concepts/prompts/
https://modelcontextprotocol.info/
https://mcpcn.com/
https://a2acn.com/
https://ap2lab.com/
https://acplib.com/
https://agent2agent.info/
https://aitosora.com/
https://chatgptcn.com/
https://ucp.md/
https://clawdbot.sh/
https://github.com/imfing/hextra

