

Wikipedia began as an impossible dream. Today, we celebrate 25 years of humanity at its best. [Join us](#)

Law of the unconscious statistician

1 language

[Article](#) [Talk](#)

[Read](#) [Edit](#) [View history](#) [Tools](#)

From Wikipedia, the free encyclopedia

In [probability theory](#) and [statistics](#), the **law of the unconscious statistician**, or **LOTUS**, is a theorem which expresses the [expected value](#) of a [function](#) $g(X)$ of a [random variable](#) X in terms of g and the [probability distribution](#) of X .

The form of the law depends on the type of random variable X in question. If the distribution of X is [discrete](#) and one knows its [probability mass function](#) p_X , then the expected value of $g(X)$ is

$$E[g(X)] = \sum_x g(x)p_X(x), \text{ where the sum is over all possible values } x \text{ of } X. \text{ If instead the}$$

distribution of X is [continuous](#) with [probability density function](#) f_X , then the expected value of $g(X)$ is

$$E[g(X)] = \int_{-\infty}^{\infty} g(x)f_X(x) dx$$

Both of these special cases can be expressed in terms of the [cumulative probability distribution function](#) F_X of X , with the expected value of $g(X)$ now given by the [Lebesgue–Stieltjes integral](#)

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) dF_X(x).$$

In even greater generality, X could be a [random element](#) in any [measurable space](#), in which case the law is given in terms of [measure theory](#) and the [Lebesgue integral](#). In this setting, there is no need to restrict the context to [probability measures](#), and the law becomes a general theorem of [mathematical analysis](#) on Lebesgue integration relative to a [pushforward measure](#).

Etymology [edit]

This proposition is (sometimes) known as the *law of the unconscious statistician* because of a purported tendency to think of the aforementioned law as the very definition of the expected value of a function $g(X)$ and a random variable X , rather than (more formally) as a consequence of the true definition of expected value.^[1] The naming is sometimes attributed to [Sheldon Ross](#)' textbook *Introduction to Probability Models*,

although he removed the reference in later editions.^[2] Many statistics textbooks do present the result as the definition of expected value.^[3]

Joint distributions [edit]

A similar property holds for [joint distributions](#), or equivalently, for [random vectors](#). For discrete random variables X and Y , a function of two variables g , and joint probability mass function $p_{X,Y}(x, y)$:^[4]

$$\mathbb{E}[g(X, Y)] = \sum_y \sum_x g(x, y) p_{X,Y}(x, y) \quad \text{In the absolutely continuous case, with } f_{X,Y}(x, y) \text{ being}$$

the joint probability density function, $\mathbb{E}[g(X, Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X,Y}(x, y) dx dy$

Special cases [edit]

A number of special cases are given here. In the simplest case, where the random variable X takes on countably many values (so that its distribution is discrete), the proof is particularly simple, and holds without modification if X is a discrete [random vector](#) or even a discrete [random element](#).

The case of a [continuous random variable](#) is more subtle, since the proof in generality requires subtle forms of the change-of-variables formula for integration. However, in the framework of [measure theory](#), the discrete case generalizes straightforwardly to general (not necessarily discrete) [random elements](#), and the case of a continuous random variable is then a special case by making use of the [Radon–Nikodym theorem](#).

Discrete case [edit]

Suppose that X is a random variable which takes on only finitely or countably many different values x_1, x_2, \dots , with probabilities p_1, p_2, \dots . Then for any function g of these values, the random variable $g(X)$ has values $g(x_1), g(x_2), \dots$, although some of these may coincide with each other. For example, this is the case if X can take on both values 1 and -1 and $g(x) = x^2$.

Let y_1, y_2, \dots enumerate the possible *distinct* values of $g(X)$, and for each i let I_i denote the collection of all j with $g(x_j) = y_i$. Then, according to the definition of expected value, there is

$$\mathbb{E}[g(X)] = \sum_i y_i p_{g(X)}(y_i).$$

Since a y_i can be the image of multiple, distinct x_j , it holds that $p_{g(X)}(y_i) = \sum_{j \in I_i} p_X(x_j)$.

Then the expected value can be rewritten as

$$\sum_i y_i p_{g(X)}(y_i) = \sum_i y_i \sum_{j \in I_i} p_X(x_j) = \sum_i \sum_{j \in I_i} g(x_j) p_X(x_j) = \sum_x g(x) p_X(x).$$

This equality relates the average of the outputs of $g(X)$ as weighted by the probabilities of the outputs themselves to the average of the outputs of $g(X)$ as weighted by the probabilities of the outputs of X .

If X takes on only finitely many possible values, the above is fully rigorous. However, if X takes on countably many values, the last equality given does not always hold, as seen by the [Riemann series theorem](#). Because of this, it is necessary to assume the [absolute convergence](#) of the sums in question.^[5]

Continuous case [edit]

Suppose that X is a random variable whose distribution has a continuous density f . If g is a general function, then the probability that $g(X)$ is valued in a set of real numbers K equals the probability that X is valued in

$g^{-1}(K)$, which is given by $\int_{g^{-1}(K)} f(x) dx$. Under various conditions on g , the [change-of-variables](#)

[formula for integration](#) can be applied to relate this to an integral over K , and hence to identify the density of $g(X)$ in terms of the density of X . In the simplest case, if g is differentiable with nowhere-vanishing

derivative, then the above integral can be written as $\int_K f(g^{-1}(y))(g^{-1})'(y) dy$, thereby identifying $g(X)$ as possessing the density $f(g^{-1}(y))(g^{-1})'(y)$. The expected value of $g(X)$ is then identified as

$$\int_{-\infty}^{\infty} y f(g^{-1}(y))(g^{-1})'(y) dy = \int_{-\infty}^{\infty} g(x) f(x) dx,$$

where the equality follows by another use of the change-of-variables formula for integration. This shows that the expected value of $g(X)$ is encoded entirely by the function g and the density f of X .^[6]

The assumption that g is differentiable with nonvanishing derivative, which is necessary for applying the usual change-of-variables formula, excludes many typical cases, such as $g(x) = x^2$. The result still holds true in these broader settings, although the proof requires more sophisticated results from [mathematical analysis](#) such as [Sard's theorem](#) and the [coarea formula](#). In even greater generality, using the [Lebesgue](#)

[theory](#) as below, it can be found that the identity $E[g(X)] = \int_{-\infty}^{\infty} g(x) f(x) dx$ holds true whenever X

has a density f (which does not have to be continuous) and whenever g is a [measurable function](#) for which $g(X)$ has finite expected value. (Every continuous function is measurable.) Furthermore, without modification to the proof, this holds even if X is a [random vector](#) (with density) and g is a multivariable function; the integral is then taken over the multi-dimensional range of values of X .

Measure-theoretic formulation [edit]

An abstract and general form of the result is available using the framework of [measure theory](#) and the [Lebesgue integral](#). Here, the setting is that of a [measure space](#) (Ω, μ) and a [measurable map](#) X from Ω to a [measurable space](#) Ω' . The theorem then says that for any measurable function g on Ω' which is valued in

real numbers (or even the [extended real number line](#)), there is

$$\int_{\Omega} g \circ X \, d\mu = \int_{\Omega'} g \, d(X_{\#}\mu),$$

(interpreted as saying, in particular, that either side of the equality exists if the other side exists). Here $X_{\#}\mu$ denotes the [pushforward measure](#) on Ω' . The 'discrete case' given above is the special case arising when X takes on only countably many values and μ is a [probability measure](#). In fact, the discrete case (although without the restriction to probability measures) is the first step in proving the general measure-theoretic formulation, as the general version follows therefrom by an application of the [monotone convergence theorem](#).^[7] Without any major changes, the result can also be formulated in the setting of [outer measures](#).^[8]

If μ is a [σ-finite measure](#), the theory of the [Radon–Nikodym derivative](#) is applicable. In the special case that the measure $X_{\#}\mu$ is [absolutely continuous](#) relative to some background σ -finite measure ν on Ω' , there is a real-valued function f_X on Ω' representing the [Radon–Nikodym derivative](#) of the two measures, and then

$$\int_{\Omega'} g \, d(X_{\#}\mu) = \int_{\Omega'} g f_X \, d\nu. \text{ In the further special case that } \Omega' \text{ is the } \text{real number line}, \text{ as in the}$$

contexts discussed above, it is natural to take ν to be the [Lebesgue measure](#), and this then recovers the 'continuous case' given above whenever μ is a [probability measure](#). (In this special case, the condition of σ -finiteness is vacuous, since Lebesgue measure and every probability measure are trivially σ -finite.)^[9]

References [edit]

1. [▲] [DeGroot & Schervish 2014](#), pp. 213–214.
2. [▲] [Casella & Berger 2001](#), Section 2.2; [Ross 2019](#).
3. [▲] [Casella & Berger 2001](#), Section 2.2.
4. [▲] [Ross 2019](#).
5. [▲] [Feller 1968](#), Section IX.2.
6. [▲] [Papoulis & Pillai 2002](#), Chapter 5.
7. [▲] [Bogachev 2007](#), Section 3.6; [Cohn 2013](#), Section 2.6; [Halmos 1950](#), Section 39.
8. [▲] [Federer 1969](#), Section 2.4.
9. [▲] [Halmos 1950](#), Section 39.

- [Bogachev, V. I. \(2007\). *Measure theory. Volume I*. Berlin: Springer-Verlag. doi:10.1007/978-3-540-34514-5 . ISBN 978-3-540-34513-8. MR 2267655 . Zbl 1120.28001 .](#)
- [Casella, George; Berger, Roger L. \(2001\). *Statistical inference*. Duxbury Advanced Series \(Second edition of 1990 original ed.\). Pacific Grove, CA: Duxbury. ISBN 0-534-11958-1. Zbl 0699.62001 .](#)
- [Cohn, Donald L. \(2013\). *Measure theory*. Birkhäuser Advanced Texts: Basler Lehrbücher \(Second edition of 1980 original ed.\). New York: Birkhäuser/Springer. doi:10.1007/978-1-4614-6956-8 . ISBN 978-1-4614-6955-1. MR 3098996 . Zbl 1292.28002 .](#)
- [DeGroot, Morris H.; Schervish, Mark J. \(2014\). *Probability and statistics* \(Fourth edition of 1975 original ed.\). Pearson Education. ISBN 0-321-50046-6. MR 0373075 . Zbl 0619.62001 .](#)

- Federer, Herbert (1969). *Geometric measure theory*. Die Grundlehren der mathematischen Wissenschaften. Vol. 153. Berlin–Heidelberg–New York: Springer-Verlag. doi:10.1007/978-3-642-62010-2 . ISBN 978-3-540-60656-7. MR 0257325 . Zbl 0176.00801 .
- Feller, William (1968). *An introduction to probability theory and its applications. Volume I* (Third edition of 1950 original ed.). New York–London–Sydney: John Wiley & Sons, Inc. MR 0228020 . Zbl 0155.23101 .
- Halmos, Paul R. (1950). *Measure theory*. New York: D. Van Nostrand Co., Inc. doi:10.1007/978-1-4684-9440-2 . MR 0033869 . Zbl 0040.16802 .
- Papoulis, Athanasios; Pillai, S. Unnikrishna (2002). *Probability, random variables, and stochastic processes* (Fourth edition of 1965 original ed.). New York: McGraw-Hill. ISBN 0-07-366011-6.
- Ross, Sheldon M. (2019). *Introduction to probability models* (Twelfth edition of 1972 original ed.). London: Academic Press. doi:10.1016/C2017-0-01324-1 . ISBN 978-0-12-814346-9. MR 3931305 . Zbl 1408.60002 .

Categories: Theory of probability distributions | Statistical laws

This page was last edited on 26 December 2024, at 20:40 (UTC).

Text is available under the [Creative Commons Attribution-ShareAlike 4.0 License](#); additional terms may apply. By using this site, you agree to the [Terms of Use](#) and [Privacy Policy](#). Wikipedia® is a registered trademark of the [Wikimedia Foundation, Inc.](#), a non-profit organization.

[Privacy policy](#) [About Wikipedia](#) [Disclaimers](#) [Contact Wikipedia](#) [Legal & safety contacts](#) [Code of Conduct](#) [Developers](#) [Statistics](#)

[Cookie statement](#) [Mobile view](#)