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In probability theory and statistics, the law of the unconscious statistician, or LOTUS, is a theorem which
expresses the expected value of a function g(X) of a random variable X in terms of g and the probability
distribution of X.

The form of the law depends on the type of random variable X in question. If the distribution of X is discrete
and one knows its probability mass function py, then the expected value of g(X) is

E[g(X)] = Z 9(x)Px (%), where the sum is over all possible values x of X. If instead the

T

distribution of X is continuous with probability density function fy, then the expected value of g(X) is

o0

E[g(X)] = / 9(@) fx (c) da

—0o0

Both of these special cases can be expressed in terms of the cumulative probability distribution function Fy
of X, with the expected value of g(X) now given by the Lebesgue—Stieltjes integral

o0

E[g(X)] = / o(c) dFx (a).

—00

In even greater generality, X could be a random element in any measurable space, in which case the law is
given in terms of measure theory and the Lebesgue integral. In this setting, there is no need to restrict the
context to probability measures, and the law becomes a general theorem of mathematical analysis on
Lebesgue integration relative to a pushforward measure.

Etymology |edit]

This proposition is (sometimes) known as the law of the unconscious statistician because of a purported
tendency to think of the aforementioned law as the very definition of the expected value of a function g(X)
and a random variable X, rather than (more formally) as a consequence of the true definition of expected
value.[* The naming is sometimes attributed to Sheldon Ross' textbook Introduction to Probability Models,
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although he removed the reference in later editions.?] Many statistics textbooks do present the result as the
definition of expected value.l®]

Joint distributions [edit]

A similar property holds for joint distributions, or equivalently, for random vectors. For discrete random
variables X and Y, a function of two variables g, and joint probability mass function px y (w, y) :[4]

Elg(X,Y)] = Z Zg(w, YPXY (2:Y) |y the absolutely continuous case, with fx v (, y) being
y =z

oo o0
the joint probability density function,  E[g(X,Y)] = / / 9(z,y) fxy(z,y)dzdy

Special cases [edit]

A number of special cases are given here. In the simplest case, where the random variable X takes on
countably many values (so that its distribution is discrete), the proof is particularly simple, and holds without
modification if X is a discrete random vector or even a discrete random element.

The case of a continuous random variable is more subtle, since the proof in generality requires subtle forms
of the change-of-variables formula for integration. However, in the framework of measure theory, the discrete
case generalizes straightforwardly to general (not necessarily discrete) random elements, and the case of a
continuous random variable is then a special case by making use of the Radon—Nikodym theorem.

Discrete case |[edit]

Suppose that X is a random variable which takes on only finitely or countably many different values
X1, Xy, ..., With probabilities pq, py, .... Then for any function g of these values, the random variable g(X) has
values g(x1), g(x»), ..., although some of these may coincide with each other. For example, this is the case

if X can take on both values 1 and —1 and g(x) = x°.

Let yy, Yo, ... enumerate the possible distinct values of g(X), and for each i let I; denote the collection of all
J with g(x;) = y;. Then, according to the definition of expected value, there is

Elg(X)] = Zyipg(X) (:)-

Since a y; can be the image of multiple, distinct x;, it holds that Py(x) (v:) = ZPX ()
JEI;
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Then the expected value can be rewritten as

D uipgx) (W) =D ui ) px(z) =Y ) g(@i)px(e;) = ) 9(@)px (@): 1is equaity
% ¢ jeI; i jel; T

relates the average of the outputs of g(X) as weighted by the probabilities of the outputs themselves to the

average of the outputs of g(X) as weighted by the probabilities of the outputs of X.

If X takes on only finitely many possible values, the above is fully rigorous. However, if X takes on countably
many values, the last equality given does not always hold, as seen by the Riemann series theorem.
Because of this, it is necessary to assume the absolute convergence of the sums in question.[5]

Continuous case |[edit]

Suppose that X is a random variable whose distribution has a continuous density f. If g is a general function,
then the probability that g(X) is valued in a set of real numbers K equals the probability that X is valued in

g_l(K), which is given by / f(-’L’) dz. Under various conditions on g, the change-of-variables
g UK

formula for integration can be applied to relate this to an integral over K, and hence to identify the density of
g(X) in terms of the density of X. In the simplest case, if g is differentiable with nowhere-vanishing

derivative, then the above integral can be written as / flg7 (@) (g71) () dy, thereby identifying
K

g(X) as possessing the density f(g )G V) (¥). The expected value of g(X) is then identified as

o0

/ yf(g (W) (¢! (y)dy = / g(z) f(z) dz, where the equality follows by another use of

—00
the change-of-variables formula for integration. This shows that the expected value of g(X) is encoded
entirely by the function g and the density f of X6l

The assumption that g is differentiable with nonvanishing derivative, which is necessary for applying the
usual change-of-variables formula, excludes many typical cases, such as g(x) = x2. The result still holds
true in these broader settings, although the proof requires more sophisticated results from mathematical
analysis such as Sard's theorem and the coarea formula. In even greater generality, using the Lebesgue

o0

theory as below, it can be found that the identity ~ E[g(X)] = / g(z) f(x) dz holds true whenever X
—00

has a density f (which does not have to be continuous) and whenever g is a measurable function for which

g(X) has finite expected value. (Every continuous function is measurable.) Furthermore, without modification

to the proof, this holds even if X is a random vector (with density) and g is a multivariable function; the

integral is then taken over the multi-dimensional range of values of X.

Measure-theoretic formulation |[edit]
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An abstract and general form of the result is available using the framework of measure theory and the
Lebesgue integral. Here, the setting is that of a measure space (Q, y) and a measurable map X from Q to a
measurable space Q'. The theorem then says that for any measurable function g on Q' which is valued in

real numbers (or even the extended real number line), there is / go Xdu = / gd(Xﬂu),
Q Q

(interpreted as saying, in particular, that either side of the equality exists if the other side exists). Here Xy
denotes the pushforward measure on Q'. The 'discrete case' given above is the special case arising when X
takes on only countably many values and 1 is a probability measure. In fact, the discrete case (although
without the restriction to probability measures) is the first step in proving the general measure-theoretic
formulation, as the general version follows therefrom by an application of the monotone convergence
theorem.[”! Without any major changes, the result can also be formulated in the setting of outer measures. 8]
If 1 is a o-finite measure, the theory of the Radon—Nikodym derivative is applicable. In the special case that
the measure Xﬂ  is absolutely continuous relative to some background o-finite measure v on Q', there is a
real-valued function fy on Q' representing the Radon—Nikodym derivative of the two measures, and then

/Q/ gd(Xu/,L) = /Q, gfx dv. In the further special case that Q' is the real number line, as in the

contexts discussed above, it is natural to take v to be the Lebesgue measure, and this then recovers the
‘continuous case' given above whenever 1 is a probability measure. (In this special case, the condition of o-
finiteness is vacuous, since Lebesgue measure and every probability measure are trivially o-finite.)[g]
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