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Common: Add additional unit tests

And fix several logical errors.
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changed
CMakelLists.txt

v +10 00000  *+»
v B8 CMakeModules

. . CMakelLists. txt d; -----
DuckStationBuildSum... v

oo @@ -1,3 +1,13 @@

v @ src _ _ _
1 + # SPDX-FileCopyrightText: 2019-2026 Connor MclLaughlin
v @ common-tests <stenzek@gmail.com>
CMakelLists.txt 2 + # SPDX-License-Identifier: CC-BY-NC-ND-4.0 + Packaging
) ) Restriction
binary_reader_writer...
3 + #
common-tests.vexpr... 4  + # NOTE: In addition to the terms of CC-BY-NC-ND-4.0,

common-tests.vexproj you may not use this file to create

5 + # packages or build recipes without explicit permission

heap_array_tests.c
. P Y- PP from the copyright holder.

small_string_tests.cpp 6 + #
v B common 7 + # Unless otherwise specified, other files supporting
the build system are covered under

heap_array.h

8 + # the same terms.

small_string.cpp 9+ #
small_string.h 0+
1 11 cmake_minimum_required(VERSION 3.19)
2 12 project(duckstation C CXX)
3 13
e
v +14 -4 Q000D | <=

CMakeModules/DuckStationBuildSummary.cmake d; -{-

X @@ -26,13 +26,23 @@ if (BUILD_TESTS)
26 26 message(STATUS "Building unit tests.")
27 27 endif()
28 28
29 - # Refuse to build in Arch package environments. My

license does not allow for packages, and I'm sick of
30 - # dealing with people complaining about things broken
by packagers. This is why we can't have nice things.
31 - if(DEFINED ENV{DEBUGINFOD_URLS})
32 - if($ENV{DEBUGINFOD_URLS} MATCHES ".*archlinux.*")
29 + # Refuse to build in hostile package environments. The
code and build script licenses do not allow for
30 + # packages, and I'm sick of dealing with people
complaining about things broken by packagers, and then
31 + # being attacked by package maintainers who violate
their distribution's codes of conduct. Attempts to
32 + # request removal of these packages have been
unsuccessful, so we have to resort to this.
33 + # NOTE: You do NOT have permission to distribute build
scripts or patches that modify the build system
34 + # without explicit permission from the copyright
holder.
35 + # DuckStation's code is public so it can be audited and
learned from. Not to repackage.
36 + # This is why we can't have nice things.
37 + if(EXISTS /etc/os-release)
38 + file(READ /etc/os-release OS_RELEASE_CONTENT)
39 + if (0OS_RELEASE_CONTENT MATCHES "ID=arch" OR
OS_RELEASE_CONTENT MATCHES "ID_LIKE=arch" OR

OS_RELEASE_CONTENT MATCHES "ID=nixos")

33 40 message (FATAL_ERROR "Unsupported environment.")
34 41 endif ()
35 42 endif ()

43 + 1if(DEFINED ENV{NIX_ BUILD_TOP} OR DEFINED ENV{NIX_STORE}
OR DEFINED ENV{IN_NIX SHELL} OR EXISTS "/etc/NIX0S")
44  + message (FATAL_ERROR "Unsupported environment.")

45 + endif()

36 46
37 47 if (DEFINED HOST_MIN_PAGE_SIZE AND DEFINED
HOST_MAX_PAGE_SIZE)
38 48 message(STATUS "Building with a dynamic page size of
${HOST_MIN_PAGE_SIZE} - ${HOST_MAX_PAGE_SIZE} bytes.")
w
v +3 000 oo

src/common-tests/CMakeLists. txt d; -%-

@@ -1,11 +1,14 @@
add_executable(common-tests
+ binary_reader_writer_tests.cpp
bitutils_tests.cpp
file system_tests.cpp

gsvector_tests.cpp

a A W N
o a0~ WN BB

gsvector_yuvtorgb_test.cpp
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6 7 hash_tests.cpp
8 + heap_array_tests.cpp
7 9 path_tests.cpp
8 10 rectangle_tests.cpp
11+ small string_tests.cpp
9 12 string_tests.cpp
10 13 )
11 14
e
v +868 0OODO °--

src/common-tests/binary_reader_writer_tests.cpp d; -%-

Load Diff

Large diffs are not rendered by default.

v +3 000 eee

src/common-tests/common-tests.vcxproj d; '3-

X @@ -3,12 +3,15 @@
3 3 <Import
Project="..\..\dep\msvc\vsprops\Configurations.props"
/>
4 4 <ItemGroup>
5 5 <ClCompile

Include="..\..\dep\googletest\src\gtest_main.cc" />

6 + <ClCompile Include="binary_reader_writer_tests.cpp"
/>
6 7 <ClCompile Include="bitutils_tests.cpp" />
7 8 <ClCompile Include="file_system_tests.cpp" />
8 9 <ClCompile Include="gsvector_tests.cpp" />
10 <ClCompile Include="heap_array_tests.cpp" />
9 11 <ClCompile Include="path_tests.cpp" />
10 12 <ClCompile Include="rectangle_tests.cpp" />
11 13 <ClCompile Include="hash_tests.cpp" />
14 <ClCompile Include="small string_tests.cpp" />
12 15 <ClCompile Include="string_tests.cpp" />
13 16 <ClCompile Include="gsvector_yuvtorgb_test.cpp" />
14 17 </ItemGroup>
T
v +3 000 oo

src/common-tests/common-tests.vcxproj.filters d; I

. @@ -10,5 +10,8 @@
10 10 <ClCompile Include="gsvector_yuvtorgb_test.cpp" />
11 11 <ClCompile Include="hash_tests.cpp" />
12 12 <ClCompile Include="gsvector_tests.cpp" />
13 <ClCompile Include="small string_tests.cpp" />
14 <ClCompile Include="binary_reader_writer_tests.cpp"
/>
15 <ClCompile Include="heap_array_tests.cpp" />
13 16 </ItemGroup>
14 17 </Project>
©
v +827 OO0OOO  e--

src/common-tests/heap_array_tests.cpp d; '3-

Load Diff

Large diffs are not rendered by default.

v +1,529 O00OO  *--

src/common-tests/small_string_tests.cpp d; '$-

Load Diff

Large diffs are not rendered by default.

v +90 -38 000D oo

src/common/heap_array.h d; '&'

X @@ -13,6 +13,9 @@
13 13 template<typename T, std::size t SIZE, std::size t
ALIGNMENT = 0>
14 14 class FixedHeapArray
15 15 {
16 + static_assert(std::is_trivially copyable_v<T>, "T is
trivially copyable");
17 + static_assert(std::is_standard_layout_v<T>, "T is
standard layout");
18 +
16 19 public:
17 20 using value_type = T;
18 21 using size_type = std::size t;
: @@ -73,12 +76,12 @@ class FixedHeapArray
73 76
74 77 void swap(this_type& move) { std::swap(m_data,
move.m_data); }
75 78
76 - std: :span<T, SIZE> span() { return std::span<T,
SIZE>(m_data); }
77 - std::span<const T, SIZE> cspan() const { return

std::span<const T, SIZE>(m_data); }
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std::span<T, SIZE> span() { return std::span<T,
SIZE>(m_data, m_data + SIZE); }
std: :span<const T, SIZE> cspan() const { return

std::span<const T, SIZE>(m_data, m_data + SIZE); }

this_type& operator=(const this_type& rhs)

{
std::copy(begin(), end(), rhs.cbegin());

std::copy(rhs.cbegin(), rhs.cend(), begin());

return *this;

@@ -90,24 +93,12 @@ class FixedHeapArray

return *this;

#define RELATIONAL_OPERATOR(op)

\
bool operator op(const this_type& rhs) const
\
{
\
for (size_type i = 0; 1 < SIZE; i++)
\
{
\
if (!(m_data[i] op rhs.m_data[i]))
\
return false;
\
}
\

RELATIONAL_OPERATOR(==);
RELATIONAL_OPERATOR(!=);
RELATIONAL_OPERATOR(<);
RELATIONAL_OPERATOR(<=);
RELATIONAL_OPERATOR(>);
RELATIONAL_OPERATOR(>=);

#undef RELATIONAL_OPERATOR

bool operator==(const this_type& rhs) const { return
(std::memcmp(m_data, rhs.m_data, SIZE * sizeof(T)) ==
0); }

bool operator!=(const this_type& rhs) const { return
(std::memcmp(m_data, rhs.m_data, SIZE * sizeof(T)) !=
0); }

bool operator<(const this_type& rhs) const { return
(std::memcmp(m_data, rhs.m_data, SIZE * sizeof(T)) <
0); }

bool operator<=(const this_type& rhs) const { return
(std::memcmp(m_data, rhs.m_data, SIZE * sizeof(T)) <=
0); }

bool operator>(const this_type& rhs) const { return
(std::memcmp(m_data, rhs.m_data, SIZE * sizeof(T)) <
0); }

bool operator>=(const this_type& rhs) const { return

(std::memcmp(m_data, rhs.m_data, SIZE * sizeof(T)) >=
0); }

private:
void allocate()

@@ -372,26 +363,87 @@ class DynamicHeapArray

return *this;

#define RELATIONAL_OPERATOR(op, size_op)

\
bool operator op(const this_type& rhs) const
\
{
\
if (m_size !'= rhs.m_size)
\
return m_size size_op rhs.m_size;
\
for (size_type i = 0; i < m_size; i++)
\
{
\
if (!(m_data[i] op rhs.m_data[i]))
\
return false;
\
}
\

bool operator==(const this_type& rhs) const

{
if (m_size !'= rhs.m_size)
return false;
if (m_size == 0)

return true;

return (std::memcmp(m_data, rhs.m_data, m_size *
sizeof(T)) == 0);
}

bool operator!=(const this_type& rhs) const

{
if (m_size !'= rhs.m_size)

return true;
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if (m_size == 0)

return false;

return (std::memcmp(m_data, rhs.m_data, m_size *

sizeof(T)) != 0);

}

bool operator<(const this_type& rhs) const

{

const size_type min_size = std::min(m_size,

rhs.m_size);

for (size_type i = 0; i < min_size; i++)

{
if (!(m_data[i] < rhs.m_data[i]))

return false;

if (m_size !'= rhs.m_size)

return m_size < rhs.m_size;

return true;

bool operator<=(const this_type& rhs) const

{

const size_type min_size = std::min(m_size,

rhs.m_size);

for (size_type i = 0; i < min_size; i++)

{
if (!(m_data[i] <= rhs.m_data[i]))

return false;

if (m_size !'= rhs.m_size)

return m_size <= rhs.m_size;

return true;

bool operator>(const this_type& rhs) const

{

const size_type min_size = std::min(m_size,

rhs.m_size);

for (size_type i = 0; i < min_size; i++)
{
if (!(m_data[i] > rhs.m_data[i]))

return false;

if (m_size !'= rhs.m_size)

return m_size > rhs.m_size;

return true;

RELATIONAL_OPERATOR(==, !=);
RELATIONAL_OPERATOR(!=, ==);
RELATIONAL_OPERATOR(<, <);
RELATIONAL_OPERATOR(<=, <=);
RELATIONAL_OPERATOR(>, >);
RELATIONAL_OPERATOR(>=, >=);

bool operator>=(const this_type& rhs) const

{

const size_type min_size = std::min(m_size,

rhs.m_size);

for (size_type i = 0; i < min_size; i++)
{
if (!(m_data[i] >= rhs.m_data[i]))

return false;

#undef RELATIONAL_OPERATOR

if (m_size !'= rhs.m_size)
return m_size >= rhs.m_size;
return true;
private:

void internal resize(size_t size, T* prev_ptr,

[[maybe_unused]] size_ t prev_size)

+51 -20 OCOO

src/common/small_string.cpp d; '$'
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@@ -86,7 +86,7 @@ void
SmallStringBase: :reserve(u32 new_reserve)

m_on_heap = true;

m_buffer_size = new_reserve;

m_buffer_size = real_reserve;

void SmallStringBase::shrink_to_fit()
@@ -100,6 +100,7 @@ void
SmallStringBase: :shrink_to_fit()

std::free(m_buffer);

m_buffer = nullptr;

m_buffer_size = 0;

m_on_heap = false;

return;



105 106
i @@ -130,7 +131,7 @@ std::string_view

SmallStringBase::view() const

130 131

131 132 SmallStringBase& SmallStringBase::operator=
(SmallStringBase&& move)

132 133 {

133 - assign(move);

134 + assign(std::move(move));

134 135 return *this;
135 136 }
136 137
g @@ -160,15 +161,16 @@ SmallStringBase&

SmallStringBase: :operator=(const

SmallStringBase& copy)

160 161

161 162 void SmallStringBase: :make_room_for(u32 space)
162 163 {

163 - const u32 required_size = m_length + space + 1;
164 - if (m_buffer_size >= required_size)

164 + const u32 required_length = m_length + space;

165 + if (m_buffer_size > required_length)

165 166 return;

166 167

167 - reserve(std: :max(required_size, m_buffer_size *
2));

168 + reserve(std: :max(required_length, m_buffer_size *

2));

168 169 3

169 170

170 171 void SmallStringBase::append(const char* str, u32
length)

171 172 {

173 + DebugAssert(str != m_buffer); // appending self

is not allowed

172 174 if (length == 0)
173 175 return;
174 176
o @@ -215,13 +217,16 @@ void

SmallStringBase: :append_hex(const void* data,

size_t len, bool comma_separa

215 217 m_buffer[m_length++] = hex_char(bytes[i] &
OXF);
216 218 3
217 219 3
220 +

221 + m_buffer[m_length] = '\0';

218 222 3

219 223

220 224 void SmallStringBase: :prepend(const char* str, u32
length)

221 225 {

222 226 if (length == 0)

223 227 return;

224 228

229 + DebugAssert(str != m_buffer); // appending self

is not allowed

225 230 make_room_for(length);
226 231
227 232 DebugAssert((length + m_length) < m_buffer_size);
. @@ -239,11 +244,13 @@ void
M SmallStringBase: :append(char c)
239 244
240 245 void SmallStringBase: :append(const SmallStringBase&
str)
241 246 {
247 + DebugAssert(&str != this); // appending self is
not allowed
242 248 append(str.m_buffer, str.m_length);
243 249 3
244 250
245 251 void SmallStringBase: :append(const char* str)
246 252 {
253 + DebugAssert(str != m_buffer); // appending self
is not allowed
247 254 append(str, static_cast<u32>(std::strlen(str)));
248 255 3
249 256
. @@ -254,6 +261,7 @@ void
M SmallStringBase: :append(const std::string& str)
254 261
255 262 void SmallStringBase: :append(const std::string_view
str)
256 263 {
264 + DebugAssert(str.data() !'= m_buffer); // appending
self is not allowed
257 265 append(str.data(), static_cast<u32>
(str.length()));
258 266 3
259 267
e @@ -307,11 +315,13 @@ void
_____ SmallStringBase: :prepend(char c)
307 315
308 316 void SmallStringBase: :prepend(const
SmallStringBase& str)
309 317 {
318 + DebugAssert(&str != this); // prepending self is
not allowed
310 319 prepend(str.m_buffer, str.m_length);
311 320 3
312 321
313 322 void SmallStringBase: :prepend(const char* str)

314 323 {



324 + DebugAssert(str != m_buffer); // prepending self

is not allowed

315 325 prepend(str, static_cast<u32>(std::strlen(str)));
316 326 3
317 327
. @@ -322,6 +332,7 @@ void
A SmallStringBase: :prepend(const std::string& str)
322 332
323 333 void SmallStringBase: :prepend(const
std::string_view str)
324 334 {
335 + DebugAssert(str.data() !'= m_buffer); //
prepending self is not allowed
325 336 prepend(str.data(), static_cast<u32>
(str.length()));
326 337 3
327 338
@@ -345,7 +356,10 @@ void
-&- SmallStringBase: :prepend_vsprintf(const char*
format, va_list ArgPtr)
345 356
346 357 for (;;)
347 358 {
348 - int ret = std::vsnprintf(buffer, buffer_size,
format, ArgPtr);
359 + std::va_list ap_copy;
360 + va_copy(ap_copy, ArgPtr);
361 + int ret = std::vsnprintf(buffer, buffer_size,
format, ap_copy);
362 + va_end(ap_copy);
349 363 if (ret < 0 || (static_cast<u32>(ret) >=
(buffer_size - 1)))
350 364 {
351 365 buffer_size *= 2;
@@ -367,11 +381,13 @@ void
-&- SmallStringBase: :prepend_vsprintf(const char*
format, va_list ArgPtr)
367 381
368 382 void SmallStringBase::insert(s32 offset, const
char* str)
369 383 {
384 + DebugAssert(str != m_buffer); // inserting self
is not allowed
370 385 insert(offset, str, static_cast<u32>
(std::strlen(str)));
371 386 3
372 387
373 388 void SmallStringBase::insert(s32 offset, const
SmallStringBase& str)
374 389 {
390 + DebugAssert(&str != this); // inserting self is
not allowed
375 391 insert(offset, str, str.m_length);
376 392 3
377 393
@@ -393,7 +409,7 @@ void
-&- SmallStringBase::insert(s32 offset, const char*
str, u32 length)
393 409 DebugAssert(real_offset <= m_length);
394 410 const u32 chars_after_offset = m_length -
real_offset;
395 411 if (chars_after_offset > 0)
396 - std: :memmove(m_buffer + offset + length,
m_buffer + offset, chars_after_offset);
412 + std: :memmove(m_buffer + real_offset + length,
m_buffer + real_offset, chars_after_offset);
397 413
398 414 // insert the string
399 415 std: :memcpy(m_buffer + real offset, str, length);
@@ -410,6 +426,7 @@ void
-&- SmallStringBase::insert(s32 offset, const
std::string& str)
410 426
411 427 void SmallStringBase::insert(s32 offset, const
std::string_view str)
412 428 {
429 + DebugAssert(str.data() !'= m_buffer); // inserting
self is not allowed
413 430 insert(offset, str.data(), static_cast<u32>
(str.size()));
414 431 3
415 432
i @@ -497,6 +514,7 @@ void
_____ SmallStringBase::assign(const std::wstring_view
wstr)
497 514 3
498 515
499 516 m_length = static_cast<u32>(mblen);
517 + m_buffer[m_length] = '\0';
500 518 3
501 519
502 520 std::wstring SmallStringBase::wstring() const
i @@ -572,7 +590,8 @@ bool
_____ SmallStringBase: :iequals(const char* otherText)
const
572 590
573 591 bool SmallStringBase::iequals(const
SmallStringBase& str) const
574 592 {
575 - return (m_length == str.m_length && (m_length ==

0 || std::strcmp(m_buffer, str.m_buffer) == 0));
593 + return (m_length == str.m_length &&
594 + (m_length == |

StringUtil::Strncasecmp(m_buffer, str.m_buffer,



m_length) == 0));

576 595 1
577 596
578 597 bool SmallStringBase::iequals(const

std::string_view str) const
i @@ -771,6 +790,9 @@ bool
SmallStringBase::ends_with(const std::string&

str, bool case_sensitive) con

771 790
772 791 void SmallStringBase::clear ()
773 792 {

793 + if (m_buffer_size == 0)

794 + return;
795 +
774 796 // in debug, zero whole string, in release, zero

only the first character

775 797 #1f _DEBUG
776 798 std: :memset(m_buffer, 0, m_buffer_size);
ey @@ -823,6 +845,9 @@ u32

_____ SmallStringBase: :count(char ch) const

823 845 u32 SmallStringBase: :replace(const char* search,
const char* replacement)

824 846 {

825 847 const u32 search_length = static_cast<u32>
(std::strlen(search));

848 + if (search_length == 0)

849 + return 0;
850 +
826 851 const u32 replacement_length = static_cast<u32>

(std::strlen(replacement));

827 852
828 853 s32 offset = 0;
@@ -833,17 +858,19 @@ u32
-&- SmallStringBase::replace(const char* search,
const char* replacement)

833 858 if (offset < 0)

834 859 break;

835 860

861 + const u32 chars_after_offset = (m_length -
static_cast<u32>(offset));

862 + DebugAssert(chars_after_offset >=
search_length);

863 +

836 864 const u32 new_length = m_length - search_length
+ replacement_length;

837 865 reserve(new_length);

838 866 m_length = new_length;

839 867

840 - const u32 chars_after_offset = (m_length -
static_cast<u32>(offset));

841 - DebugAssert(chars_after_offset >=
search_length);

842 868 if (chars_after_offset > search_length)

843 869 {

844 870 std: :memmove (&m_buffer[static_cast<u32>
(offset) + replacement_length],

845 871 &m_buffer[static_cast<u32>
(offset) + search_length], chars_after_offset -
search_length);

846 872 std: :memcpy(&m_buffer[static_cast<u32>
(offset)], replacement, replacement_length);

873 + m_buffer[m_length] = '\0';

847 874 3

848 875 else

849 876 {

@@ -861,22 +888,26 @@ u32
-&- SmallStringBase::replace(const char* search,
const char* replacement)

861 888

862 889 void SmallStringBase::resize(u32 new_size, char
fill, bool shrink_if_smaller)

863 890 {

864 - // if going larger, or we don't own the buffer,
realloc

865 - if (new_size >= m_buffer_size)

891 + if (new_size > m_length)

866 892 {
893 + // expanding - ensure we have space
867 894 reserve(new_size);
868 895
869 - if (m_length < new_size)
870 - {
871 - std: :memset(m_buffer + m_length, fill,

m_buffer_size - m_length - 1);

872 - 3
873 -
896 + // fill the expanded area with the fill
character
897 + std::memset(m_buffer + m_length, fill, new_size
- m_length);
874 898 m_length = new_size;
899 +

900 + #ifdef _DEBUG

901 + // zero remaining unused buffer in debug

902 + std: :memset(m_buffer + m_length, 0O,
m_buffer_size - new_size);

903 + #else

904 + m_buffer[m_length] = 0;

905 + #endif

875 206 3

876 907 else

877 208 {

878 - // update length and terminator

879 - #if _DEBUG



880

881
882

975

976
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978

979
980
981

909

910
911

912
913

1006

1007
1008

1009

1010
1011
1012

+ // shrinking or same size - update length and

terminator
+ #ifdef _DEBUG
std: :memset(m_buffer + new_size, 0O,
m_buffer_size - new_size);
#else
m_buffer[new_size] = 0;

@@ -975,7 +1006,7 @@ void

SmallStringBase::erase(s32 offset, s32 count)

const u32 after_erase_block = m_length -

real_offset - real_count;

DebugAssert(after_erase_block > 0);

- std: :memmove(m_buffer + offset, m_buffer +

real_offset + real_count, after_erase_block);

+ std: :memmove (m_buffer + real offset, m_buffer +

real_offset + real_count, after_erase_block);

m_length = m_length - real_count;

#ifdef _DEBUG

+16 -4 0OODOOO
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@@ -184,6 +184,9 @@ class SmallStringBase

// returns the end of the string (pointer is past

the last character)

ALWAYS_INLINE const char* end_ptr() const { return

m_buffer + m_length; }

+ // returns true if the string is heap-allocated

+ ALWAYS_INLINE bool is_heap_allocated() const {

return m_on_heap; }

// STL adapters

ALWAYS_INLINE char& front() { return m_buffer[0]; }

ALWAYS_INLINE const char& front() const { return

m_buffer[0]; }
@@ -287,7 +290,7 @@ class SmallStackString

public SmallStringBase

ALWAYS_INLINE SmallStackString(SmallStringBase&&

move)
{
init();
- assign(move);

+ move_assign(std: :move(move));

ALWAYS_INLINE explicit SmallStackString(const

SmallStackString& copy)
@@ -299,7 +302,7 @@ class SmallStackString
public SmallStringBase
ALWAYS_INLINE explicit
SmallStackString(SmallStackString&& move)
{
init();
- assign(move);

+ move_assign(std: :move(move));

ALWAYS_INLINE explicit SmallStackString(const

std::string& str)
@@ -322,7 +325,7 @@ class SmallStackString

public SmallStringBase

ALWAYS_INLINE SmallStackString& operator=
(SmallStringBase&& move)
{
- assign(move);
+ move_assign(std: :move(move));

return *this;

@@ -334,7 +337,7 @@ class SmallStackString

public SmallStringBase

ALWAYS_INLINE SmallStackString& operator=
(SmallStackString&& move)
{
- assign(move);
+ move_assign(std: :move(move));

return *this;

@@ -378,6 +381,15 @@ class SmallStackString
public SmallStringBase
m_stack_buffer[0] = '\0';
#endif
}

+ ALWAYS_INLINE void move_assign(SmallStringBase&&

move)
+  {
+ // only move if on the heap, otherwise copy
+ if (move.is_heap_allocated())
+ SmallStringBase::assign(std: :move(move));
+ else
+ assign(move.data(), move.length());
+ %
4

#ifdef _MSC_VER



Comments 0

&

Please sign in to comment.


https://github.com/login?return_to=https://github.com/stenzek/duckstation/commit/64d13882479e5598a1276e273d231c95a094158c

