B stenzek / duckstation (Public L\ Notifications % Fork 873 Y¢ Star 9.6k

<> Code 19 Pullrequests () Actions [J Wiki @ Security |~ Insights

/\ This commit does not belong to any branch on this repository, and may belong to a fork outside of the
repository.

Commit 64d1388 &Y Browse files
1 stenzek committed 3 days ago

Common: Add additional unit tests

And fix several logical errors.

1 parent f5191f5 commit 64d1388 (L]

ilter fi = 11 files
Q Filterfiles... ) +3414 -66 lines changed = Q_ Search within code £e3
changed
CMakelLists.txt

v +10 00000  *+»
v B8 CMakeModules

. . CMakelLists. txt d; -----
DuckStationBuildSum... v

oo @@ -1,3 +1,13 @@

v @ src _ _ _
1 + # SPDX-FileCopyrightText: 2019-2026 Connor MclLaughlin
v @ common-tests <stenzek@gmail.com>
CMakelLists.txt 2 + # SPDX-License-Identifier: CC-BY-NC-ND-4.0 + Packaging
) ) Restriction
binary_reader_writer...
3 + #
common-tests.vexpr... 4  + # NOTE: In addition to the terms of CC-BY-NC-ND-4.0,

common-tests.vexproj you may not use this file to create

5 + # packages or build recipes without explicit permission

heap_array_tests.c
. P Y- PP from the copyright holder.

small_string_tests.cpp 6 + #
v B common 7 + # Unless otherwise specified, other files supporting
the build system are covered under

heap_array.h

8 + # the same terms.

small_string.cpp 9+ #
small_string.h 0+
1 11 cmake_minimum_required(VERSION 3.19)
2 12 project(duckstation C CXX)
3 13
e
v +14 -4 Q000D | <=

CMakeModules/DuckStationBuildSummary.cmake d; -{-

X @@ -26,13 +26,23 @@ if (BUILD_TESTS)
26 26 message(STATUS "Building unit tests.")
27 27 endif()
28 28
29 - # Refuse to build in Arch package environments. My

license does not allow for packages, and I'm sick of
30 - # dealing with people complaining about things broken
by packagers. This is why we can't have nice things.
31 - if(DEFINED ENV{DEBUGINFOD_URLS})
32 - if($ENV{DEBUGINFOD_URLS} MATCHES ".*archlinux.*")
29 + # Refuse to build in hostile package environments. The
code and build script licenses do not allow for
30 + # packages, and I'm sick of dealing with people
complaining about things broken by packagers, and then
31 + # being attacked by package maintainers who violate
their distribution's codes of conduct. Attempts to
32 + # request removal of these packages have been
unsuccessful, so we have to resort to this.
33 + # NOTE: You do NOT have permission to distribute build
scripts or patches that modify the build system
34 + # without explicit permission from the copyright
holder.
35 + # DuckStation's code is public so it can be audited and
learned from. Not to repackage.
36 + # This is why we can't have nice things.
37 + if(EXISTS /etc/os-release)
38 + file(READ /etc/os-release OS_RELEASE_CONTENT)
39 + if (0OS_RELEASE_CONTENT MATCHES "ID=arch" OR
OS_RELEASE_CONTENT MATCHES "ID_LIKE=arch" OR

OS_RELEASE_CONTENT MATCHES "ID=nixos")

33 40 message (FATAL_ERROR "Unsupported environment.")
34 41 endif ()
35 42 endif ()

43 + 1if(DEFINED ENV{NIX_ BUILD_TOP} OR DEFINED ENV{NIX_STORE}
OR DEFINED ENV{IN_NIX SHELL} OR EXISTS "/etc/NIX0S")
44  + message (FATAL_ERROR "Unsupported environment.")

45 + endif()

36 46
37 47 if (DEFINED HOST_MIN_PAGE_SIZE AND DEFINED
HOST_MAX_PAGE_SIZE)
38 48 message(STATUS "Building with a dynamic page size of
${HOST_MIN_PAGE_SIZE} - ${HOST_MAX_PAGE_SIZE} bytes.")
w
v +3 000 oo

src/common-tests/CMakeLists. txt d; -%-

@@ -1,11 +1,14 @@
add_executable(common-tests
+ binary_reader_writer_tests.cpp
bitutils_tests.cpp
file system_tests.cpp

gsvector_tests.cpp

a A W N
o a0~ WN BB

gsvector_yuvtorgb_test.cpp


https://github.com/stenzek
https://github.com/stenzek/duckstation
https://github.com/stenzek
https://github.com/stenzek/duckstation/commits?author=stenzek
https://github.com/login?return_to=%2Fstenzek%2Fduckstation
https://github.com/login?return_to=%2Fstenzek%2Fduckstation
https://github.com/login?return_to=%2Fstenzek%2Fduckstation
https://github.com/stenzek/duckstation
https://github.com/stenzek/duckstation/pulls
https://github.com/stenzek/duckstation/actions
https://github.com/stenzek/duckstation/wiki
https://github.com/stenzek/duckstation/security
https://github.com/stenzek/duckstation/pulse
https://github.com/stenzek/duckstation/tree/64d13882479e5598a1276e273d231c95a094158c
https://github.com/stenzek/duckstation/commit/f5191f599bd9380b3e625c50dde6ebef457334f8
https://github.com/
https://github.com/login?return_to=https%3A%2F%2Fgithub.com%2Fstenzek%2Fduckstation%2Fcommit%2F64d13882479e5598a1276e273d231c95a094158c

6 7 hash_tests.cpp
8 + heap_array_tests.cpp
7 9 path_tests.cpp
8 10 rectangle_tests.cpp
11+ small string_tests.cpp
9 12 string_tests.cpp
10 13 )
11 14
e
v +868 0OODO °--

src/common-tests/binary_reader_writer_tests.cpp d; -%-

Load Diff

Large diffs are not rendered by default.

v +3 000 eee

src/common-tests/common-tests.vcxproj d; '3-

X @@ -3,12 +3,15 @@
3 3 <Import
Project="..\..\dep\msvc\vsprops\Configurations.props"
/>
4 4 <ItemGroup>
5 5 <ClCompile

Include="..\..\dep\googletest\src\gtest_main.cc" />

6 + <ClCompile Include="binary_reader_writer_tests.cpp"
/>
6 7 <ClCompile Include="bitutils_tests.cpp" />
7 8 <ClCompile Include="file_system_tests.cpp" />
8 9 <ClCompile Include="gsvector_tests.cpp" />
10 <ClCompile Include="heap_array_tests.cpp" />
9 11 <ClCompile Include="path_tests.cpp" />
10 12 <ClCompile Include="rectangle_tests.cpp" />
11 13 <ClCompile Include="hash_tests.cpp" />
14 <ClCompile Include="small string_tests.cpp" />
12 15 <ClCompile Include="string_tests.cpp" />
13 16 <ClCompile Include="gsvector_yuvtorgb_test.cpp" />
14 17 </ItemGroup>
T
v +3 000 oo

src/common-tests/common-tests.vcxproj.filters d; I

. @@ -10,5 +10,8 @@
10 10 <ClCompile Include="gsvector_yuvtorgb_test.cpp" />
11 11 <ClCompile Include="hash_tests.cpp" />
12 12 <ClCompile Include="gsvector_tests.cpp" />
13 <ClCompile Include="small string_tests.cpp" />
14 <ClCompile Include="binary_reader_writer_tests.cpp"
/>
15 <ClCompile Include="heap_array_tests.cpp" />
13 16 </ItemGroup>
14 17 </Project>
©
v +827 OO0OOO  e--

src/common-tests/heap_array_tests.cpp d; '3-

Load Diff

Large diffs are not rendered by default.

v +1,529 O00OO  *--

src/common-tests/small_string_tests.cpp d; '$-

Load Diff

Large diffs are not rendered by default.

v +90 -38 000D oo

src/common/heap_array.h d; '&'

X @@ -13,6 +13,9 @@
13 13 template<typename T, std::size t SIZE, std::size t
ALIGNMENT = 0>
14 14 class FixedHeapArray
15 15 {
16 + static_assert(std::is_trivially copyable_v<T>, "T is
trivially copyable");
17 + static_assert(std::is_standard_layout_v<T>, "T is
standard layout");
18 +
16 19 public:
17 20 using value_type = T;
18 21 using size_type = std::size t;
: @@ -73,12 +76,12 @@ class FixedHeapArray
73 76
74 77 void swap(this_type& move) { std::swap(m_data,
move.m_data); }
75 78
76 - std: :span<T, SIZE> span() { return std::span<T,
SIZE>(m_data); }
77 - std::span<const T, SIZE> cspan() const { return

std::span<const T, SIZE>(m_data); }



78
79
80
81

82

83

84

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109
110

111
112
113

372

373

374

375

376

377

378

379

380

381

382

383

384

79

80

81
82
83

84
85
86
87

93
94
95

96

97

98

99

100

101

102
103
104

363
364
365

366
367
368
369
370
371
372
373
374

375
376
377
378
379
380

std::span<T, SIZE> span() { return std::span<T,
SIZE>(m_data, m_data + SIZE); }
std: :span<const T, SIZE> cspan() const { return

std::span<const T, SIZE>(m_data, m_data + SIZE); }

this_type& operator=(const this_type& rhs)

{
std::copy(begin(), end(), rhs.cbegin());

std::copy(rhs.cbegin(), rhs.cend(), begin());

return *this;

@@ -90,24 +93,12 @@ class FixedHeapArray

return *this;

#define RELATIONAL_OPERATOR(op)

\
bool operator op(const this_type& rhs) const
\
{
\
for (size_type i = 0; 1 < SIZE; i++)
\
{
\
if (!(m_data[i] op rhs.m_data[i]))
\
return false;
\
}
\

RELATIONAL_OPERATOR(==);
RELATIONAL_OPERATOR(!=);
RELATIONAL_OPERATOR(<);
RELATIONAL_OPERATOR(<=);
RELATIONAL_OPERATOR(>);
RELATIONAL_OPERATOR(>=);

#undef RELATIONAL_OPERATOR

bool operator==(const this_type& rhs) const { return
(std::memcmp(m_data, rhs.m_data, SIZE * sizeof(T)) ==
0); }

bool operator!=(const this_type& rhs) const { return
(std::memcmp(m_data, rhs.m_data, SIZE * sizeof(T)) !=
0); }

bool operator<(const this_type& rhs) const { return
(std::memcmp(m_data, rhs.m_data, SIZE * sizeof(T)) <
0); }

bool operator<=(const this_type& rhs) const { return
(std::memcmp(m_data, rhs.m_data, SIZE * sizeof(T)) <=
0); }

bool operator>(const this_type& rhs) const { return
(std::memcmp(m_data, rhs.m_data, SIZE * sizeof(T)) <
0); }

bool operator>=(const this_type& rhs) const { return

(std::memcmp(m_data, rhs.m_data, SIZE * sizeof(T)) >=
0); }

private:
void allocate()

@@ -372,26 +363,87 @@ class DynamicHeapArray

return *this;

#define RELATIONAL_OPERATOR(op, size_op)

\
bool operator op(const this_type& rhs) const
\
{
\
if (m_size !'= rhs.m_size)
\
return m_size size_op rhs.m_size;
\
for (size_type i = 0; i < m_size; i++)
\
{
\
if (!(m_data[i] op rhs.m_data[i]))
\
return false;
\
}
\

bool operator==(const this_type& rhs) const

{
if (m_size !'= rhs.m_size)
return false;
if (m_size == 0)

return true;

return (std::memcmp(m_data, rhs.m_data, m_size *
sizeof(T)) == 0);
}

bool operator!=(const this_type& rhs) const

{
if (m_size !'= rhs.m_size)

return true;



385
386
387
388
389
390
391
392

393
394

395
396
397

381
382
383
384
385

386
387
388
389
390

391
392
393
394
395
396
397
398
399
400
401
402
403
404
405

406
407
408
409
410
411
412
413
414
415
416
417
418
419
420

421
422
423
424
425
426
427
428
429
430
431
432

433
434
435

436
437
438
439
440
441

442
443
444
445
446
447
448
449

if (m_size == 0)

return false;

return (std::memcmp(m_data, rhs.m_data, m_size *

sizeof(T)) != 0);

}

bool operator<(const this_type& rhs) const

{

const size_type min_size = std::min(m_size,

rhs.m_size);

for (size_type i = 0; i < min_size; i++)

{
if (!(m_data[i] < rhs.m_data[i]))

return false;

if (m_size !'= rhs.m_size)

return m_size < rhs.m_size;

return true;

bool operator<=(const this_type& rhs) const

{

const size_type min_size = std::min(m_size,

rhs.m_size);

for (size_type i = 0; i < min_size; i++)

{
if (!(m_data[i] <= rhs.m_data[i]))

return false;

if (m_size !'= rhs.m_size)

return m_size <= rhs.m_size;

return true;

bool operator>(const this_type& rhs) const

{

const size_type min_size = std::min(m_size,

rhs.m_size);

for (size_type i = 0; i < min_size; i++)
{
if (!(m_data[i] > rhs.m_data[i]))

return false;

if (m_size !'= rhs.m_size)

return m_size > rhs.m_size;

return true;

RELATIONAL_OPERATOR(==, !=);
RELATIONAL_OPERATOR(!=, ==);
RELATIONAL_OPERATOR(<, <);
RELATIONAL_OPERATOR(<=, <=);
RELATIONAL_OPERATOR(>, >);
RELATIONAL_OPERATOR(>=, >=);

bool operator>=(const this_type& rhs) const

{

const size_type min_size = std::min(m_size,

rhs.m_size);

for (size_type i = 0; i < min_size; i++)
{
if (!(m_data[i] >= rhs.m_data[i]))

return false;

#undef RELATIONAL_OPERATOR

if (m_size !'= rhs.m_size)
return m_size >= rhs.m_size;
return true;
private:

void internal resize(size_t size, T* prev_ptr,

[[maybe_unused]] size_ t prev_size)

+51 -20 OCOO

src/common/small_string.cpp d; '$'

86
87
88
89

90
91
92

100
101

102

103

104

86
87
88

89
90
91
92

100
101
102
103
104

105

+

@@ -86,7 +86,7 @@ void
SmallStringBase: :reserve(u32 new_reserve)

m_on_heap = true;

m_buffer_size = new_reserve;

m_buffer_size = real_reserve;

void SmallStringBase::shrink_to_fit()
@@ -100,6 +100,7 @@ void
SmallStringBase: :shrink_to_fit()

std::free(m_buffer);

m_buffer = nullptr;

m_buffer_size = 0;

m_on_heap = false;

return;



105 106
i @@ -130,7 +131,7 @@ std::string_view

SmallStringBase::view() const

130 131

131 132 SmallStringBase& SmallStringBase::operator=
(SmallStringBase&& move)

132 133 {

133 - assign(move);

134 + assign(std::move(move));

134 135 return *this;
135 136 }
136 137
g @@ -160,15 +161,16 @@ SmallStringBase&

SmallStringBase: :operator=(const

SmallStringBase& copy)

160 161

161 162 void SmallStringBase: :make_room_for(u32 space)
162 163 {

163 - const u32 required_size = m_length + space + 1;
164 - if (m_buffer_size >= required_size)

164 + const u32 required_length = m_length + space;

165 + if (m_buffer_size > required_length)

165 166 return;

166 167

167 - reserve(std: :max(required_size, m_buffer_size *
2));

168 + reserve(std: :max(required_length, m_buffer_size *

2));

168 169 3

169 170

170 171 void SmallStringBase::append(const char* str, u32
length)

171 172 {

173 + DebugAssert(str != m_buffer); // appending self

is not allowed

172 174 if (length == 0)
173 175 return;
174 176
o @@ -215,13 +217,16 @@ void

SmallStringBase: :append_hex(const void* data,

size_t len, bool comma_separa

215 217 m_buffer[m_length++] = hex_char(bytes[i] &
OXF);
216 218 3
217 219 3
220 +

221 + m_buffer[m_length] = '\0';

218 222 3

219 223

220 224 void SmallStringBase: :prepend(const char* str, u32
length)

221 225 {

222 226 if (length == 0)

223 227 return;

224 228

229 + DebugAssert(str != m_buffer); // appending self

is not allowed

225 230 make_room_for(length);
226 231
227 232 DebugAssert((length + m_length) < m_buffer_size);
. @@ -239,11 +244,13 @@ void
M SmallStringBase: :append(char c)
239 244
240 245 void SmallStringBase: :append(const SmallStringBase&
str)
241 246 {
247 + DebugAssert(&str != this); // appending self is
not allowed
242 248 append(str.m_buffer, str.m_length);
243 249 3
244 250
245 251 void SmallStringBase: :append(const char* str)
246 252 {
253 + DebugAssert(str != m_buffer); // appending self
is not allowed
247 254 append(str, static_cast<u32>(std::strlen(str)));
248 255 3
249 256
. @@ -254,6 +261,7 @@ void
M SmallStringBase: :append(const std::string& str)
254 261
255 262 void SmallStringBase: :append(const std::string_view
str)
256 263 {
264 + DebugAssert(str.data() !'= m_buffer); // appending
self is not allowed
257 265 append(str.data(), static_cast<u32>
(str.length()));
258 266 3
259 267
e @@ -307,11 +315,13 @@ void
_____ SmallStringBase: :prepend(char c)
307 315
308 316 void SmallStringBase: :prepend(const
SmallStringBase& str)
309 317 {
318 + DebugAssert(&str != this); // prepending self is
not allowed
310 319 prepend(str.m_buffer, str.m_length);
311 320 3
312 321
313 322 void SmallStringBase: :prepend(const char* str)

314 323 {



324 + DebugAssert(str != m_buffer); // prepending self

is not allowed

315 325 prepend(str, static_cast<u32>(std::strlen(str)));
316 326 3
317 327
. @@ -322,6 +332,7 @@ void
A SmallStringBase: :prepend(const std::string& str)
322 332
323 333 void SmallStringBase: :prepend(const
std::string_view str)
324 334 {
335 + DebugAssert(str.data() !'= m_buffer); //
prepending self is not allowed
325 336 prepend(str.data(), static_cast<u32>
(str.length()));
326 337 3
327 338
@@ -345,7 +356,10 @@ void
-&- SmallStringBase: :prepend_vsprintf(const char*
format, va_list ArgPtr)
345 356
346 357 for (;;)
347 358 {
348 - int ret = std::vsnprintf(buffer, buffer_size,
format, ArgPtr);
359 + std::va_list ap_copy;
360 + va_copy(ap_copy, ArgPtr);
361 + int ret = std::vsnprintf(buffer, buffer_size,
format, ap_copy);
362 + va_end(ap_copy);
349 363 if (ret < 0 || (static_cast<u32>(ret) >=
(buffer_size - 1)))
350 364 {
351 365 buffer_size *= 2;
@@ -367,11 +381,13 @@ void
-&- SmallStringBase: :prepend_vsprintf(const char*
format, va_list ArgPtr)
367 381
368 382 void SmallStringBase::insert(s32 offset, const
char* str)
369 383 {
384 + DebugAssert(str != m_buffer); // inserting self
is not allowed
370 385 insert(offset, str, static_cast<u32>
(std::strlen(str)));
371 386 3
372 387
373 388 void SmallStringBase::insert(s32 offset, const
SmallStringBase& str)
374 389 {
390 + DebugAssert(&str != this); // inserting self is
not allowed
375 391 insert(offset, str, str.m_length);
376 392 3
377 393
@@ -393,7 +409,7 @@ void
-&- SmallStringBase::insert(s32 offset, const char*
str, u32 length)
393 409 DebugAssert(real_offset <= m_length);
394 410 const u32 chars_after_offset = m_length -
real_offset;
395 411 if (chars_after_offset > 0)
396 - std: :memmove(m_buffer + offset + length,
m_buffer + offset, chars_after_offset);
412 + std: :memmove(m_buffer + real_offset + length,
m_buffer + real_offset, chars_after_offset);
397 413
398 414 // insert the string
399 415 std: :memcpy(m_buffer + real offset, str, length);
@@ -410,6 +426,7 @@ void
-&- SmallStringBase::insert(s32 offset, const
std::string& str)
410 426
411 427 void SmallStringBase::insert(s32 offset, const
std::string_view str)
412 428 {
429 + DebugAssert(str.data() !'= m_buffer); // inserting
self is not allowed
413 430 insert(offset, str.data(), static_cast<u32>
(str.size()));
414 431 3
415 432
i @@ -497,6 +514,7 @@ void
_____ SmallStringBase::assign(const std::wstring_view
wstr)
497 514 3
498 515
499 516 m_length = static_cast<u32>(mblen);
517 + m_buffer[m_length] = '\0';
500 518 3
501 519
502 520 std::wstring SmallStringBase::wstring() const
i @@ -572,7 +590,8 @@ bool
_____ SmallStringBase: :iequals(const char* otherText)
const
572 590
573 591 bool SmallStringBase::iequals(const
SmallStringBase& str) const
574 592 {
575 - return (m_length == str.m_length && (m_length ==

0 || std::strcmp(m_buffer, str.m_buffer) == 0));
593 + return (m_length == str.m_length &&
594 + (m_length == |

StringUtil::Strncasecmp(m_buffer, str.m_buffer,



m_length) == 0));

576 595 1
577 596
578 597 bool SmallStringBase::iequals(const

std::string_view str) const
i @@ -771,6 +790,9 @@ bool
SmallStringBase::ends_with(const std::string&

str, bool case_sensitive) con

771 790
772 791 void SmallStringBase::clear ()
773 792 {

793 + if (m_buffer_size == 0)

794 + return;
795 +
774 796 // in debug, zero whole string, in release, zero

only the first character

775 797 #1f _DEBUG
776 798 std: :memset(m_buffer, 0, m_buffer_size);
ey @@ -823,6 +845,9 @@ u32

_____ SmallStringBase: :count(char ch) const

823 845 u32 SmallStringBase: :replace(const char* search,
const char* replacement)

824 846 {

825 847 const u32 search_length = static_cast<u32>
(std::strlen(search));

848 + if (search_length == 0)

849 + return 0;
850 +
826 851 const u32 replacement_length = static_cast<u32>

(std::strlen(replacement));

827 852
828 853 s32 offset = 0;
@@ -833,17 +858,19 @@ u32
-&- SmallStringBase::replace(const char* search,
const char* replacement)

833 858 if (offset < 0)

834 859 break;

835 860

861 + const u32 chars_after_offset = (m_length -
static_cast<u32>(offset));

862 + DebugAssert(chars_after_offset >=
search_length);

863 +

836 864 const u32 new_length = m_length - search_length
+ replacement_length;

837 865 reserve(new_length);

838 866 m_length = new_length;

839 867

840 - const u32 chars_after_offset = (m_length -
static_cast<u32>(offset));

841 - DebugAssert(chars_after_offset >=
search_length);

842 868 if (chars_after_offset > search_length)

843 869 {

844 870 std: :memmove (&m_buffer[static_cast<u32>
(offset) + replacement_length],

845 871 &m_buffer[static_cast<u32>
(offset) + search_length], chars_after_offset -
search_length);

846 872 std: :memcpy(&m_buffer[static_cast<u32>
(offset)], replacement, replacement_length);

873 + m_buffer[m_length] = '\0';

847 874 3

848 875 else

849 876 {

@@ -861,22 +888,26 @@ u32
-&- SmallStringBase::replace(const char* search,
const char* replacement)

861 888

862 889 void SmallStringBase::resize(u32 new_size, char
fill, bool shrink_if_smaller)

863 890 {

864 - // if going larger, or we don't own the buffer,
realloc

865 - if (new_size >= m_buffer_size)

891 + if (new_size > m_length)

866 892 {
893 + // expanding - ensure we have space
867 894 reserve(new_size);
868 895
869 - if (m_length < new_size)
870 - {
871 - std: :memset(m_buffer + m_length, fill,

m_buffer_size - m_length - 1);

872 - 3
873 -
896 + // fill the expanded area with the fill
character
897 + std::memset(m_buffer + m_length, fill, new_size
- m_length);
874 898 m_length = new_size;
899 +

900 + #ifdef _DEBUG

901 + // zero remaining unused buffer in debug

902 + std: :memset(m_buffer + m_length, 0O,
m_buffer_size - new_size);

903 + #else

904 + m_buffer[m_length] = 0;

905 + #endif

875 206 3

876 907 else

877 208 {

878 - // update length and terminator

879 - #if _DEBUG



880

881
882

975

976
977
978

979
980
981

909

910
911

912
913

1006

1007
1008

1009

1010
1011
1012

+ // shrinking or same size - update length and

terminator
+ #ifdef _DEBUG
std: :memset(m_buffer + new_size, 0O,
m_buffer_size - new_size);
#else
m_buffer[new_size] = 0;

@@ -975,7 +1006,7 @@ void

SmallStringBase::erase(s32 offset, s32 count)

const u32 after_erase_block = m_length -

real_offset - real_count;

DebugAssert(after_erase_block > 0);

- std: :memmove(m_buffer + offset, m_buffer +

real_offset + real_count, after_erase_block);

+ std: :memmove (m_buffer + real offset, m_buffer +

real_offset + real_count, after_erase_block);

m_length = m_length - real_count;

#ifdef _DEBUG

+16 -4 0OODOOO

src/common/small_string.h d; '$'

185

186

187
188
189

288
289
290

291
292
293

299

300
301
302

303
304
305

322
323

324
325

326
327
328

334
335

336
337

381
382
383

184

185

186
187
188

189
190
191

192

290

291
292

293
294
295
296

302

303
304

305
306
307
308

325
326

327

328
329
330
331

337
338

339

340
341
342
343

381
382
383
384
385

386
387
388
389
390
391
392
393
394
395

@@ -184,6 +184,9 @@ class SmallStringBase

// returns the end of the string (pointer is past

the last character)

ALWAYS_INLINE const char* end_ptr() const { return

m_buffer + m_length; }

+ // returns true if the string is heap-allocated

+ ALWAYS_INLINE bool is_heap_allocated() const {

return m_on_heap; }

// STL adapters

ALWAYS_INLINE char& front() { return m_buffer[0]; }

ALWAYS_INLINE const char& front() const { return

m_buffer[0]; }
@@ -287,7 +290,7 @@ class SmallStackString

public SmallStringBase

ALWAYS_INLINE SmallStackString(SmallStringBase&&

move)
{
init();
- assign(move);

+ move_assign(std: :move(move));

ALWAYS_INLINE explicit SmallStackString(const

SmallStackString& copy)
@@ -299,7 +302,7 @@ class SmallStackString
public SmallStringBase
ALWAYS_INLINE explicit
SmallStackString(SmallStackString&& move)
{
init();
- assign(move);

+ move_assign(std: :move(move));

ALWAYS_INLINE explicit SmallStackString(const

std::string& str)
@@ -322,7 +325,7 @@ class SmallStackString

public SmallStringBase

ALWAYS_INLINE SmallStackString& operator=
(SmallStringBase&& move)
{
- assign(move);
+ move_assign(std: :move(move));

return *this;

@@ -334,7 +337,7 @@ class SmallStackString

public SmallStringBase

ALWAYS_INLINE SmallStackString& operator=
(SmallStackString&& move)
{
- assign(move);
+ move_assign(std: :move(move));

return *this;

@@ -378,6 +381,15 @@ class SmallStackString
public SmallStringBase
m_stack_buffer[0] = '\0';
#endif
}

+ ALWAYS_INLINE void move_assign(SmallStringBase&&

move)
+  {
+ // only move if on the heap, otherwise copy
+ if (move.is_heap_allocated())
+ SmallStringBase::assign(std: :move(move));
+ else
+ assign(move.data(), move.length());
+ %
4

#ifdef _MSC_VER



Comments 0

&

Please sign in to comment.


https://github.com/login?return_to=https://github.com/stenzek/duckstation/commit/64d13882479e5598a1276e273d231c95a094158c

