
stenzek / duckstation Public

Commit 64d1388
stenzek committed 3 days ago Verified

Notifications Fork 873 Star 9.6k

Code Pull requests Actions Wiki Security Insights

This commit does not belong to any branch on this repository, and may belong to a fork outside of the
repository.

Browse files

1 parent f5191f5 commit 64d1388

Common: Add additional unit tests

And fix several logical errors.

Filter files…

CMakeLists.txt

CMakeModules

DuckStationBuildSum…

src

common-tests

CMakeLists.txt

binary_reader_writer…

common-tests.vcxpr…

common-tests.vcxproj

heap_array_tests.cpp

small_string_tests.cpp

common

heap_array.h

small_string.cpp

small_string.h

@@ -1,3 +1,13 @@

1 # SPDX-FileCopyrightText: 2019-2026 Connor McLaughlin

<stenzek@gmail.com>

+

2 # SPDX-License-Identifier: CC-BY-NC-ND-4.0 + Packaging

Restriction

+

3 #+

4 # NOTE: In addition to the terms of CC-BY-NC-ND-4.0,

you may not use this file to create

+

5 # packages or build recipes without explicit permission

from the copyright holder.

+

6 #+

7 # Unless otherwise specified, other files supporting

the build system are covered under

+

8 # the same terms.+

9 #+

10 +

1 11 cmake_minimum_required(VERSION 3.19)

2 12 project(duckstation C CXX)

3 13

+10

CMakeLists.txt‎

@@ -26,13 +26,23 @@ if(BUILD_TESTS)

26 26 message(STATUS "Building unit tests.")

27 27 endif()

28 28

29 # Refuse to build in Arch package environments. My

license does not allow for packages, and I'm sick of

-

30 # dealing with people complaining about things broken

by packagers. This is why we can't have nice things.

-

31 if(DEFINED ENV{DEBUGINFOD_URLS})-

32 if($ENV{DEBUGINFOD_URLS} MATCHES ".*archlinux.*")-

29 # Refuse to build in hostile package environments. The

code and build script licenses do not allow for

+

30 # packages, and I'm sick of dealing with people

complaining about things broken by packagers, and then

+

31 # being attacked by package maintainers who violate

their distribution's codes of conduct. Attempts to

+

32 # request removal of these packages have been

unsuccessful, so we have to resort to this.

+

33 # NOTE: You do NOT have permission to distribute build

scripts or patches that modify the build system

+

34 # without explicit permission from the copyright

holder.

+

35 # DuckStation's code is public so it can be audited and

learned from. Not to repackage.

+

36 # This is why we can't have nice things.+

37 if(EXISTS /etc/os-release)+

38 file(READ /etc/os-release OS_RELEASE_CONTENT)+

39 if(OS_RELEASE_CONTENT MATCHES "ID=arch" OR

OS_RELEASE_CONTENT MATCHES "ID_LIKE=arch" OR

OS_RELEASE_CONTENT MATCHES "ID=nixos")

+

33 40 message(FATAL_ERROR "Unsupported environment.")

34 41 endif()

35 42 endif()

43 if(DEFINED ENV{NIX_BUILD_TOP} OR DEFINED ENV{NIX_STORE}

OR DEFINED ENV{IN_NIX_SHELL} OR EXISTS "/etc/NIXOS")

+

44 message(FATAL_ERROR "Unsupported environment.")+

45 endif()+

36 46

37 47 if(DEFINED HOST_MIN_PAGE_SIZE AND DEFINED

HOST_MAX_PAGE_SIZE)

38 48 message(STATUS "Building with a dynamic page size of

${HOST_MIN_PAGE_SIZE} - ${HOST_MAX_PAGE_SIZE} bytes.")

+14 -4

CMakeModules/DuckStationBuildSummary.cmake

@@ -1,11 +1,14 @@

1 1 add_executable(common-tests

2 binary_reader_writer_tests.cpp+

2 3 bitutils_tests.cpp

3 4 file_system_tests.cpp

4 5 gsvector_tests.cpp

5 6 gsvector_yuvtorgb_test.cpp

+3

src/common-tests/CMakeLists.txt

11 files
changed

+3414 -66 lines changed Search within code

Sign in

https://github.com/stenzek
https://github.com/stenzek/duckstation
https://github.com/stenzek
https://github.com/stenzek/duckstation/commits?author=stenzek
https://github.com/login?return_to=%2Fstenzek%2Fduckstation
https://github.com/login?return_to=%2Fstenzek%2Fduckstation
https://github.com/login?return_to=%2Fstenzek%2Fduckstation
https://github.com/stenzek/duckstation
https://github.com/stenzek/duckstation/pulls
https://github.com/stenzek/duckstation/actions
https://github.com/stenzek/duckstation/wiki
https://github.com/stenzek/duckstation/security
https://github.com/stenzek/duckstation/pulse
https://github.com/stenzek/duckstation/tree/64d13882479e5598a1276e273d231c95a094158c
https://github.com/stenzek/duckstation/commit/f5191f599bd9380b3e625c50dde6ebef457334f8
https://github.com/
https://github.com/login?return_to=https%3A%2F%2Fgithub.com%2Fstenzek%2Fduckstation%2Fcommit%2F64d13882479e5598a1276e273d231c95a094158c

6 7 hash_tests.cpp

8 heap_array_tests.cpp+

7 9 path_tests.cpp

8 10 rectangle_tests.cpp

11 small_string_tests.cpp+

9 12 string_tests.cpp

10 13)

11 14

Load Diff

Large diffs are not rendered by default.

+868

src/common-tests/binary_reader_writer_tests.cpp

@@ -3,12 +3,15 @@

3 3 <Import

Project="..\..\dep\msvc\vsprops\Configurations.props"

/>

4 4 <ItemGroup>

5 5 <ClCompile

Include="..\..\dep\googletest\src\gtest_main.cc" />

6 <ClCompile Include="binary_reader_writer_tests.cpp"

/>

+

6 7 <ClCompile Include="bitutils_tests.cpp" />

7 8 <ClCompile Include="file_system_tests.cpp" />

8 9 <ClCompile Include="gsvector_tests.cpp" />

10 <ClCompile Include="heap_array_tests.cpp" />+

9 11 <ClCompile Include="path_tests.cpp" />

10 12 <ClCompile Include="rectangle_tests.cpp" />

11 13 <ClCompile Include="hash_tests.cpp" />

14 <ClCompile Include="small_string_tests.cpp" />+

12 15 <ClCompile Include="string_tests.cpp" />

13 16 <ClCompile Include="gsvector_yuvtorgb_test.cpp" />

14 17 </ItemGroup>

+3

src/common-tests/common-tests.vcxproj

@@ -10,5 +10,8 @@

10 10 <ClCompile Include="gsvector_yuvtorgb_test.cpp" />

11 11 <ClCompile Include="hash_tests.cpp" />

12 12 <ClCompile Include="gsvector_tests.cpp" />

13 <ClCompile Include="small_string_tests.cpp" />+

14 <ClCompile Include="binary_reader_writer_tests.cpp"

/>

+

15 <ClCompile Include="heap_array_tests.cpp" />+

13 16 </ItemGroup>

14 17 </Project>

+3

src/common-tests/common-tests.vcxproj.filters

Load Diff

Large diffs are not rendered by default.

+827

src/common-tests/heap_array_tests.cpp

Load Diff

Large diffs are not rendered by default.

+1,529

src/common-tests/small_string_tests.cpp‎

@@ -13,6 +13,9 @@

13 13 template<typename T, std::size_t SIZE, std::size_t

ALIGNMENT = 0>

14 14 class FixedHeapArray

15 15 {

16 static_assert(std::is_trivially_copyable_v<T>, "T is

trivially copyable");

+

17 static_assert(std::is_standard_layout_v<T>, "T is

standard layout");

+

18 +

16 19 public:

17 20 using value_type = T;

18 21 using size_type = std::size_t;

@@ -73,12 +76,12 @@ class FixedHeapArray

73 76

74 77 void swap(this_type& move) { std::swap(m_data,

move.m_data); }

75 78

76 std::span<T, SIZE> span() { return std::span<T,

SIZE>(m_data); }

-

77 std::span<const T, SIZE> cspan() const { return

std::span<const T, SIZE>(m_data); }

-

+90 -38

src/common/heap_array.h‎

79 std::span<T, SIZE> span() { return std::span<T,

SIZE>(m_data, m_data + SIZE); }

+

80 std::span<const T, SIZE> cspan() const { return

std::span<const T, SIZE>(m_data, m_data + SIZE); }

+

78 81

79 82 this_type& operator=(const this_type& rhs)

80 83 {

81 std::copy(begin(), end(), rhs.cbegin());-

84 std::copy(rhs.cbegin(), rhs.cend(), begin());+

82 85 return *this;

83 86 }

84 87

@@ -90,24 +93,12 @@ class FixedHeapArray

90 93 return *this;

91 94 }

92 95

93 #define RELATIONAL_OPERATOR(op)

\

-

94 bool operator op(const this_type& rhs) const

\

-

95 {

\

-

96 for (size_type i = 0; i < SIZE; i++)

\

-

97 {

\

-

98 if (!(m_data[i] op rhs.m_data[i]))

\

-

99 return false;

\

-

100 }

\

-

101 }-

102 -

103 RELATIONAL_OPERATOR(==);-

104 RELATIONAL_OPERATOR(!=);-

105 RELATIONAL_OPERATOR(<);-

106 RELATIONAL_OPERATOR(<=);-

107 RELATIONAL_OPERATOR(>);-

108 RELATIONAL_OPERATOR(>=);-

109 -

110 #undef RELATIONAL_OPERATOR-

96 bool operator==(const this_type& rhs) const { return

(std::memcmp(m_data, rhs.m_data, SIZE * sizeof(T)) ==

0); }

+

97 bool operator!=(const this_type& rhs) const { return

(std::memcmp(m_data, rhs.m_data, SIZE * sizeof(T)) !=

0); }

+

98 bool operator<(const this_type& rhs) const { return

(std::memcmp(m_data, rhs.m_data, SIZE * sizeof(T)) <

0); }

+

99 bool operator<=(const this_type& rhs) const { return

(std::memcmp(m_data, rhs.m_data, SIZE * sizeof(T)) <=

0); }

+

100 bool operator>(const this_type& rhs) const { return

(std::memcmp(m_data, rhs.m_data, SIZE * sizeof(T)) <

0); }

+

101 bool operator>=(const this_type& rhs) const { return

(std::memcmp(m_data, rhs.m_data, SIZE * sizeof(T)) >=

0); }

+

111 102

112 103 private:

113 104 void allocate()

@@ -372,26 +363,87 @@ class DynamicHeapArray

372 363 return *this;

373 364 }

374 365

375 #define RELATIONAL_OPERATOR(op, size_op)

\

-

376 bool operator op(const this_type& rhs) const

\

-

377 {

\

-

378 if (m_size != rhs.m_size)

\

-

379 return m_size size_op rhs.m_size;

\

-

380 for (size_type i = 0; i < m_size; i++)

\

-

381 {

\

-

382 if (!(m_data[i] op rhs.m_data[i]))

\

-

383 return false;

\

-

384 }

\

-

366 bool operator==(const this_type& rhs) const+

367 {+

368 if (m_size != rhs.m_size)+

369 return false;+

370 +

371 if (m_size == 0)+

372 return true;+

373 +

374 return (std::memcmp(m_data, rhs.m_data, m_size *

sizeof(T)) == 0);

+

375 }+

376 +

377 bool operator!=(const this_type& rhs) const+

378 {+

379 if (m_size != rhs.m_size)+

380 return true;+

381 +

382 if (m_size == 0)+

383 return false;+

384 +

385 return (std::memcmp(m_data, rhs.m_data, m_size *

sizeof(T)) != 0);

+

386 }+

387 +

388 bool operator<(const this_type& rhs) const+

389 {+

390 const size_type min_size = std::min(m_size,

rhs.m_size);

+

391 for (size_type i = 0; i < min_size; i++)+

392 {+

393 if (!(m_data[i] < rhs.m_data[i]))+

394 return false;+

395 }+

396 +

397 if (m_size != rhs.m_size)+

398 return m_size < rhs.m_size;+

399 +

400 return true;+

401 }+

402 +

403 bool operator<=(const this_type& rhs) const+

404 {+

405 const size_type min_size = std::min(m_size,

rhs.m_size);

+

406 for (size_type i = 0; i < min_size; i++)+

407 {+

408 if (!(m_data[i] <= rhs.m_data[i]))+

409 return false;+

410 }+

411 +

412 if (m_size != rhs.m_size)+

413 return m_size <= rhs.m_size;+

414 +

415 return true;+

416 }+

417 +

418 bool operator>(const this_type& rhs) const+

419 {+

420 const size_type min_size = std::min(m_size,

rhs.m_size);

+

421 for (size_type i = 0; i < min_size; i++)+

422 {+

423 if (!(m_data[i] > rhs.m_data[i]))+

424 return false;+

425 }+

426 +

427 if (m_size != rhs.m_size)+

428 return m_size > rhs.m_size;+

429 +

430 return true;+

385 431 }

386 432

387 RELATIONAL_OPERATOR(==, !=);-

388 RELATIONAL_OPERATOR(!=, ==);-

389 RELATIONAL_OPERATOR(<, <);-

390 RELATIONAL_OPERATOR(<=, <=);-

391 RELATIONAL_OPERATOR(>, >);-

392 RELATIONAL_OPERATOR(>=, >=);-

433 bool operator>=(const this_type& rhs) const+

434 {+

435 const size_type min_size = std::min(m_size,

rhs.m_size);

+

436 for (size_type i = 0; i < min_size; i++)+

437 {+

438 if (!(m_data[i] >= rhs.m_data[i]))+

439 return false;+

440 }+

393 441

394 #undef RELATIONAL_OPERATOR-

442 if (m_size != rhs.m_size)+

443 return m_size >= rhs.m_size;+

444 +

445 return true;+

446 }+

395 447

396 448 private:

397 449 void internal_resize(size_t size, T* prev_ptr,

[[maybe_unused]] size_t prev_size)

@@ -86,7 +86,7 @@ void

SmallStringBase::reserve(u32 new_reserve)

86 86 m_on_heap = true;

87 87 }

88 88

89 m_buffer_size = new_reserve;-

89 m_buffer_size = real_reserve;+

90 90 }

91 91

92 92 void SmallStringBase::shrink_to_fit()

@@ -100,6 +100,7 @@ void

SmallStringBase::shrink_to_fit()

100 100 std::free(m_buffer);

101 101 m_buffer = nullptr;

102 102 m_buffer_size = 0;

103 m_on_heap = false;+

103 104 return;

104 105 }

+51 -20

src/common/small_string.cpp

105 106

@@ -130,7 +131,7 @@ std::string_view

SmallStringBase::view() const

130 131

131 132 SmallStringBase& SmallStringBase::operator=

(SmallStringBase&& move)

132 133 {

133 assign(move);-

134 assign(std::move(move));+

134 135 return *this;

135 136 }

136 137

@@ -160,15 +161,16 @@ SmallStringBase&

SmallStringBase::operator=(const

SmallStringBase& copy)

160 161

161 162 void SmallStringBase::make_room_for(u32 space)

162 163 {

163 const u32 required_size = m_length + space + 1;-

164 if (m_buffer_size >= required_size)-

164 const u32 required_length = m_length + space;+

165 if (m_buffer_size > required_length)+

165 166 return;

166 167

167 reserve(std::max(required_size, m_buffer_size *

2));

-

168 reserve(std::max(required_length, m_buffer_size *

2));

+

168 169 }

169 170

170 171 void SmallStringBase::append(const char* str, u32

length)

171 172 {

173 DebugAssert(str != m_buffer); // appending self

is not allowed

+

172 174 if (length == 0)

173 175 return;

174 176

@@ -215,13 +217,16 @@ void

SmallStringBase::append_hex(const void* data,

size_t len, bool comma_separa

215 217 m_buffer[m_length++] = hex_char(bytes[i] &

0xF);

216 218 }

217 219 }

220 +

221 m_buffer[m_length] = '\0';+

218 222 }

219 223

220 224 void SmallStringBase::prepend(const char* str, u32

length)

221 225 {

222 226 if (length == 0)

223 227 return;

224 228

229 DebugAssert(str != m_buffer); // appending self

is not allowed

+

225 230 make_room_for(length);

226 231

227 232 DebugAssert((length + m_length) < m_buffer_size);

@@ -239,11 +244,13 @@ void

SmallStringBase::append(char c)

239 244

240 245 void SmallStringBase::append(const SmallStringBase&

str)

241 246 {

247 DebugAssert(&str != this); // appending self is

not allowed

+

242 248 append(str.m_buffer, str.m_length);

243 249 }

244 250

245 251 void SmallStringBase::append(const char* str)

246 252 {

253 DebugAssert(str != m_buffer); // appending self

is not allowed

+

247 254 append(str, static_cast<u32>(std::strlen(str)));

248 255 }

249 256

@@ -254,6 +261,7 @@ void

SmallStringBase::append(const std::string& str)

254 261

255 262 void SmallStringBase::append(const std::string_view

str)

256 263 {

264 DebugAssert(str.data() != m_buffer); // appending

self is not allowed

+

257 265 append(str.data(), static_cast<u32>

(str.length()));

258 266 }

259 267

@@ -307,11 +315,13 @@ void

SmallStringBase::prepend(char c)

307 315

308 316 void SmallStringBase::prepend(const

SmallStringBase& str)

309 317 {

318 DebugAssert(&str != this); // prepending self is

not allowed

+

310 319 prepend(str.m_buffer, str.m_length);

311 320 }

312 321

313 322 void SmallStringBase::prepend(const char* str)

314 323 {

324 DebugAssert(str != m_buffer); // prepending self

is not allowed

+

315 325 prepend(str, static_cast<u32>(std::strlen(str)));

316 326 }

317 327

@@ -322,6 +332,7 @@ void

SmallStringBase::prepend(const std::string& str)

322 332

323 333 void SmallStringBase::prepend(const

std::string_view str)

324 334 {

335 DebugAssert(str.data() != m_buffer); //

prepending self is not allowed

+

325 336 prepend(str.data(), static_cast<u32>

(str.length()));

326 337 }

327 338

@@ -345,7 +356,10 @@ void

SmallStringBase::prepend_vsprintf(const char*

format, va_list ArgPtr)

345 356

346 357 for (;;)

347 358 {

348 int ret = std::vsnprintf(buffer, buffer_size,

format, ArgPtr);

-

359 std::va_list ap_copy;+

360 va_copy(ap_copy, ArgPtr);+

361 int ret = std::vsnprintf(buffer, buffer_size,

format, ap_copy);

+

362 va_end(ap_copy);+

349 363 if (ret < 0 || (static_cast<u32>(ret) >=

(buffer_size - 1)))

350 364 {

351 365 buffer_size *= 2;

@@ -367,11 +381,13 @@ void

SmallStringBase::prepend_vsprintf(const char*

format, va_list ArgPtr)

367 381

368 382 void SmallStringBase::insert(s32 offset, const

char* str)

369 383 {

384 DebugAssert(str != m_buffer); // inserting self

is not allowed

+

370 385 insert(offset, str, static_cast<u32>

(std::strlen(str)));

371 386 }

372 387

373 388 void SmallStringBase::insert(s32 offset, const

SmallStringBase& str)

374 389 {

390 DebugAssert(&str != this); // inserting self is

not allowed

+

375 391 insert(offset, str, str.m_length);

376 392 }

377 393

@@ -393,7 +409,7 @@ void

SmallStringBase::insert(s32 offset, const char*

str, u32 length)

393 409 DebugAssert(real_offset <= m_length);

394 410 const u32 chars_after_offset = m_length -

real_offset;

395 411 if (chars_after_offset > 0)

396 std::memmove(m_buffer + offset + length,

m_buffer + offset, chars_after_offset);

-

412 std::memmove(m_buffer + real_offset + length,

m_buffer + real_offset, chars_after_offset);

+

397 413

398 414 // insert the string

399 415 std::memcpy(m_buffer + real_offset, str, length);

@@ -410,6 +426,7 @@ void

SmallStringBase::insert(s32 offset, const

std::string& str)

410 426

411 427 void SmallStringBase::insert(s32 offset, const

std::string_view str)

412 428 {

429 DebugAssert(str.data() != m_buffer); // inserting

self is not allowed

+

413 430 insert(offset, str.data(), static_cast<u32>

(str.size()));

414 431 }

415 432

@@ -497,6 +514,7 @@ void

SmallStringBase::assign(const std::wstring_view

wstr)

497 514 }

498 515

499 516 m_length = static_cast<u32>(mblen);

517 m_buffer[m_length] = '\0';+

500 518 }

501 519

502 520 std::wstring SmallStringBase::wstring() const

@@ -572,7 +590,8 @@ bool

SmallStringBase::iequals(const char* otherText)

const

572 590

573 591 bool SmallStringBase::iequals(const

SmallStringBase& str) const

574 592 {

575 return (m_length == str.m_length && (m_length ==

0 || std::strcmp(m_buffer, str.m_buffer) == 0));

-

593 return (m_length == str.m_length &&+

594 (m_length == 0 ||

StringUtil::Strncasecmp(m_buffer, str.m_buffer,

+

m_length) == 0));

576 595 }

577 596

578 597 bool SmallStringBase::iequals(const

std::string_view str) const

@@ -771,6 +790,9 @@ bool

SmallStringBase::ends_with(const std::string&

str, bool case_sensitive) con

771 790

772 791 void SmallStringBase::clear()

773 792 {

793 if (m_buffer_size == 0)+

794 return;+

795 +

774 796 // in debug, zero whole string, in release, zero

only the first character

775 797 #if _DEBUG

776 798 std::memset(m_buffer, 0, m_buffer_size);

@@ -823,6 +845,9 @@ u32

SmallStringBase::count(char ch) const

823 845 u32 SmallStringBase::replace(const char* search,

const char* replacement)

824 846 {

825 847 const u32 search_length = static_cast<u32>

(std::strlen(search));

848 if (search_length == 0)+

849 return 0;+

850 +

826 851 const u32 replacement_length = static_cast<u32>

(std::strlen(replacement));

827 852

828 853 s32 offset = 0;

@@ -833,17 +858,19 @@ u32

SmallStringBase::replace(const char* search,

const char* replacement)

833 858 if (offset < 0)

834 859 break;

835 860

861 const u32 chars_after_offset = (m_length -

static_cast<u32>(offset));

+

862 DebugAssert(chars_after_offset >=

search_length);

+

863 +

836 864 const u32 new_length = m_length - search_length

+ replacement_length;

837 865 reserve(new_length);

838 866 m_length = new_length;

839 867

840 const u32 chars_after_offset = (m_length -

static_cast<u32>(offset));

-

841 DebugAssert(chars_after_offset >=

search_length);

-

842 868 if (chars_after_offset > search_length)

843 869 {

844 870 std::memmove(&m_buffer[static_cast<u32>

(offset) + replacement_length],

845 871 &m_buffer[static_cast<u32>

(offset) + search_length], chars_after_offset -

search_length);

846 872 std::memcpy(&m_buffer[static_cast<u32>

(offset)], replacement, replacement_length);

873 m_buffer[m_length] = '\0';+

847 874 }

848 875 else

849 876 {

@@ -861,22 +888,26 @@ u32

SmallStringBase::replace(const char* search,

const char* replacement)

861 888

862 889 void SmallStringBase::resize(u32 new_size, char

fill, bool shrink_if_smaller)

863 890 {

864 // if going larger, or we don't own the buffer,

realloc

-

865 if (new_size >= m_buffer_size)-

891 if (new_size > m_length)+

866 892 {

893 // expanding - ensure we have space+

867 894 reserve(new_size);

868 895

869 if (m_length < new_size)-

870 {-

871 std::memset(m_buffer + m_length, fill,

m_buffer_size - m_length - 1);

-

872 }-

873 -

896 // fill the expanded area with the fill

character

+

897 std::memset(m_buffer + m_length, fill, new_size

- m_length);

+

874 898 m_length = new_size;

899 +

900 #ifdef _DEBUG+

901 // zero remaining unused buffer in debug+

902 std::memset(m_buffer + m_length, 0,

m_buffer_size - new_size);

+

903 #else+

904 m_buffer[m_length] = 0;+

905 #endif+

875 906 }

876 907 else

877 908 {

878 // update length and terminator-

879 #if _DEBUG-

909 // shrinking or same size - update length and

terminator

+

910 #ifdef _DEBUG+

880 911 std::memset(m_buffer + new_size, 0,

m_buffer_size - new_size);

881 912 #else

882 913 m_buffer[new_size] = 0;

@@ -975,7 +1006,7 @@ void

SmallStringBase::erase(s32 offset, s32 count)

975 1006 const u32 after_erase_block = m_length -

real_offset - real_count;

976 1007 DebugAssert(after_erase_block > 0);

977 1008

978 std::memmove(m_buffer + offset, m_buffer +

real_offset + real_count, after_erase_block);

-

1009 std::memmove(m_buffer + real_offset, m_buffer +

real_offset + real_count, after_erase_block);

+

979 1010 m_length = m_length - real_count;

980 1011

981 1012 #ifdef _DEBUG

@@ -184,6 +184,9 @@ class SmallStringBase

184 184 // returns the end of the string (pointer is past

the last character)

185 185 ALWAYS_INLINE const char* end_ptr() const { return

m_buffer + m_length; }

186 186

187 // returns true if the string is heap-allocated+

188 ALWAYS_INLINE bool is_heap_allocated() const {

return m_on_heap; }

+

189 +

187 190 // STL adapters

188 191 ALWAYS_INLINE char& front() { return m_buffer[0]; }

189 192 ALWAYS_INLINE const char& front() const { return

m_buffer[0]; }

@@ -287,7 +290,7 @@ class SmallStackString :

public SmallStringBase

287 290 ALWAYS_INLINE SmallStackString(SmallStringBase&&

move)

288 291 {

289 292 init();

290 assign(move);-

293 move_assign(std::move(move));+

291 294 }

292 295

293 296 ALWAYS_INLINE explicit SmallStackString(const

SmallStackString& copy)

@@ -299,7 +302,7 @@ class SmallStackString :

public SmallStringBase

299 302 ALWAYS_INLINE explicit

SmallStackString(SmallStackString&& move)

300 303 {

301 304 init();

302 assign(move);-

305 move_assign(std::move(move));+

303 306 }

304 307

305 308 ALWAYS_INLINE explicit SmallStackString(const

std::string& str)

@@ -322,7 +325,7 @@ class SmallStackString :

public SmallStringBase

322 325

323 326 ALWAYS_INLINE SmallStackString& operator=

(SmallStringBase&& move)

324 327 {

325 assign(move);-

328 move_assign(std::move(move));+

326 329 return *this;

327 330 }

328 331

@@ -334,7 +337,7 @@ class SmallStackString :

public SmallStringBase

334 337

335 338 ALWAYS_INLINE SmallStackString& operator=

(SmallStackString&& move)

336 339 {

337 assign(move);-

340 move_assign(std::move(move));+

338 341 return *this;

339 342 }

340 343

@@ -378,6 +381,15 @@ class SmallStackString :

public SmallStringBase

378 381 m_stack_buffer[0] = '\0';

379 382 #endif

380 383 }

384 +

385 ALWAYS_INLINE void move_assign(SmallStringBase&&

move)

+

386 {+

387 // only move if on the heap, otherwise copy+

388 if (move.is_heap_allocated())+

389 SmallStringBase::assign(std::move(move));+

390 else+

391 assign(move.data(), move.length());+

392 }+

381 393 };

382 394

383 395 #ifdef _MSC_VER

+16 -4

src/common/small_string.h

Comments 0

Please sign in to comment.

https://github.com/login?return_to=https://github.com/stenzek/duckstation/commit/64d13882479e5598a1276e273d231c95a094158c

